首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1-Farnesylpyridinium (FPy), an analog of isoprenoid farnesol, strongly inhibited the growth of sake yeast at 120 microM in YPD medium, whereas at 30 microM it reduced cellular production of isoamyl acetate to 20% of the control level despite the absence of inhibitory effect on CO2 evolution. The FPy-resistant mutant A1 was characterized by the high production of flavor compounds represented by a nearly threefold increase in the level of isoamyl acetate in YPD medium in which the level of isoamyl alcohol as its precursor remained almost unchanged. The FPy resistance phenotype of strain A1 was not accompanied by cellular resistance to either the L-leucine analog or L-canavanine, which alters yeast amino acid metabolism in favor of isoamyl alcohol production. Alcohol acetyltransferase (AATase) activity was high in strain A1, which further increased in response to isoamyl alcohol accumulation in medium. Flavor compound production in sake brewing could be improved using strain A1, resulting in a 1.4-fold increase in isoamyl acetate production in spite of a limited production of isoamyl alcohol.  相似文献   

2.
Screening of drug‐resistant mutants of sake yeast strains has been a major method for creation of superior strains. We attempted to create a valproic acid (VPA)‐resistant mutant strain from sake yeast Kyokai No. 7 (K7). VPA is a branched‐chain fatty acid and is an inositol synthesis inhibitor in mammals and yeast. We succeeded in isolating a mutant of strain K7 that can survive long‐term in a VPA‐containing medium. This strain, K7‐VPALS, is significantly more resistant to not only VPA‐induced cell death but also ethanol in comparison with the parent strain. Further experiments showed that the new strain is likely to have a deficiency in inositol and/or phosphatidylinositol synthesis. The major characteristics of sake brewed by strain K7‐VPALS (compared with K7) were lower amino acidity, higher isoamyl acetate content without an increase in the isoamyl alcohol level and changes in constituent organic acids, particularly higher malate and succinate but lower acetate concentrations. In addition, taste sensor analysis revealed that K7‐VPALS‐brewed sake has milder sourness and higher saltiness or richness than K7‐brewed sake does. High isoamyl acetate production may be related to a deficiency in phosphatidylinositol because this compound directly inhibits alcohol acetyltransferase, an enzyme responsible for isoamyl acetate synthesis. Strain K7‐VPALS grew more rapidly than the parental strain did in a medium containing acetate as a sole carbon source, indicating that K7‐VPALS effectively assimilates acetate and converts it to malate and succinate through the glyoxylate cycle. Thus, strain K7‐VPALS shows improved characteristics for brewing of high‐quality sake. Copyright © 2017 The Institute of Brewing & Distilling  相似文献   

3.
Arrested or limited fermentation process is a widespread method used for production of alcohol‐free beer (AFB). However, it usually leads to worty off‐flavour and a lack of pleasant fruity flavour/aroma. The aim of this study was to isolate spontaneous mutants of Saccharomyces pastorianus strain 2 resistant to 5,5,5‐trifluoro‐dl ‐leucine, since the resistance is related to overproduction of flavour active isoamyl alcohol (IAAL) and isoamyl acetate (IAAC). The mutants were the subject of selection during series of screening tests aimed at selecting the best producer of target compounds (IAAL and IAAC). Subsequently, the overproduction stability of the selected mutant strain was verified in four consecutive fermentations of AFBs. A higher pitching rate and increased fermentation temperature did not result in an overall improvement in the production of the target compounds. Sensory analysis proved the flavouring effect of the spontaneous lager yeast mutant on the AFB produced by arrested fermentation. Copyright © 2013 The Institute of Brewing & Distilling  相似文献   

4.
Sake yeast strains were improved so as to produce larger amounts of isoamyl acetate than the parental strain by isolating econazole-resistant mutants. Econazole, an imidazole antimycotic, directly interacts with unsaturated fatty acids in the yeast cell membrane, where it also inhibits the synthesis of ergosterol and decreases the ratio of unsaturated to saturated fatty acids. In contrast, alcohol acetyltransferase (AATase), which catalyzes the synthesis of isoamyl acetate, is inhibited by unsaturated fatty acids. Fifty econazole-resistant mutants were isolated from a sake yeast, Kyokai no. 701, several of which produced approximately 1.4 to 2.4 times more isoamyl acetate and an almost equal amount of isoamyl alcohol compared with the parental strain. The AATase activities of the mutants in koji extract were 1.2 to 1.4 times higher, and the unsaturated to saturated fatty acid ratios were lower, than in the parental strain.  相似文献   

5.
Isoamyl acetate is a natural flavour ester, widely used as a source of banana flavour by the food industry. Fusel alcohols such as amyl alcohol are produced in significant quantities as a waste product, sometimes referred to as “lees oil” or “fusel oil”, of the alcohol distilling industry. By manipulation of brewing yeast fermentation conditions, a significant portion of added amyl alcohol was shown to be converted to isoamyl acetate. This was achieved by the addition of L‐leucine and amyl alcohol in fermentations carried out by a high ester‐producing brewing yeast strain of Saccharomyces cerevisiae and by the use of alkaline fermentation conditions coupled with high gravity media. Mutant strains selected on 5,5,5 trifluoro‐DL‐leucine produced substantially high levels of isoamyl acetate. The adjustment of fermentation conditions outlined in this paper may act as a stepping stone for the potential use of Saccharomyces cerevisiae and other yeasts to produce high levels of natural flavour esters.  相似文献   

6.
Malate is an important taste component of sake (a Japanese alcoholic beverage) that is produced by the yeast Saccharomyces cerevisiae during alcoholic fermentation. A variety of methods for generating high malate‐producing yeast strains have been developed to date. We recently reported that a high malate‐producing strain was isolated as a mutant sensitive to dimethyl succinate (DMS), and that a mutation in the vacuolar import and degradation protein (VID) 24 gene was responsible for high malate productivity and DMS sensitivity. In this work, the relationships between heterozygous and homozygous mutants of VID24 and malate productivity in diploid sake yeast were examined and a method was developed for breeding a higher malate‐producing strain. First a diploid yeast was generated with a homozygous VID24 mutation by genetic engineering. The homozygous integrants produced more malate during sake brewing and grew more slowly in DMS medium than wild‐type and heterozygous integrants. Thus, the genotype of the VID24 mutation influenced the level of malate production and sensitivity to DMS in diploid yeast. Then a homozygous mutant from a heterozygous mutant was obtained without genetic engineering by ultraviolet irradiation and culturing in DMS with nystatin enrichment. The non‐genetically modified sake yeast with a homozygous VID24 mutation exhibited a higher level of malate productivity than the parent heterozygous mutant strain. These findings provide a basis for controlling malate production in yeast, and thereby regulating malate levels in sake. Copyright © 2016 The Institute of Brewing & Distilling  相似文献   

7.
Alcohol acetyltransferase (AATase), which is mainly encoded by ATF1, is one of the most important enzymes for acetate ester synthesis. On the other hand, isoamyl acetate is degraded into a higher alcohol under the catalysis of IAH1‐encoded esterase. In this study, Chinese Saccharomyces cerevisiae was used as the parent strain to construct an ATF1 overexpression and IAH1 disruption mutant. The results show that after 5 days of pre‐fermentation, the concentrations of ethyl acetate, isoamyl acetate and isobutyl acetate in the yellow rice wines fermented with EY1 (pUC‐PIAK) increased to 468.94 mg L?1 (which is approximately 22‐fold higher than that of the parent cell RY1), 99.86 and 7.69 mg L?1 respectively. Meanwhile, isoamyl alcohol production was reduced to 56.37 mg L?1 (which is approximately 50% of that produced by the parent strain RY1). Therefore, ATF1 overexpression and IAH1 disruption can significantly increase acetate esters contents and reduce isoamyl alcohol content in Chinese yellow rice wine, thereby paving the way for breeding an excellent yeast strain for high‐quality Chinese yellow rice wine production.  相似文献   

8.
Quantitative analysis of the volatile flavor components in Korean alcoholic beverages (makgeolli and yakju) and Japanese sake was carried out using SPME-GC/MS. Fusel oils (n-butyl alcohol, isobutyl alcohol, isoamyl alcohol, and phenethyl alcohol), ethyl esters (ethyl acetate, isoamyl acetate, ethyl caproate, ethyl caprylate, and ethyl caprate) and aldehydes (furfural and benzaldehyde) were analyzed quantitatively by an 85 μm SPME fiber (carboxen/polydimethylsiloxane) using internal standards (1-pentanol-1-13C and methyl nonanoate). Phenethyl alcohol (85-216 ppm) and isoamyl alcohol (38-115 ppm) constituted the majority of fusel oils in all the samples. Acetic acid was detected in sour makgeolli at a high level (0.02-0.14 ppm) compared with yakju and sake. A very high level of total ethyl esters (ethyl acetate, isoamyl acetate, ethyl caprate, and phenethyl acetate), having fruit and flower flavor, was found in makgeolli. Processing the volatile flavor data by multivariate partial least squares discriminant analysis, makgeolli, yakju, and sake showed cluster separation.  相似文献   

9.
The vicinal diketones (VDK), such as diacetyl and 2,3‐pentandione, impart an unpleasant butter‐like flavour to beer. Typically, these are required to be reduced below the flavour thresholds during the maturation (lagering) stages of the brewing process. To shorten beer maturation time, we constructed a self‐cloning, bottom‐fermenting yeast with low VDK production by integrating ILV5, a gene encoding a protein that metabolizes α‐acetolactate and α‐aceto‐α‐hydroxybutyrate (precursors of VDK). A DNA fragment containing Saccharomyces cerevisiae‐type ILV5 was inserted upstream of S. cerevisiae‐type ILV2 in bottom‐fermenting yeast to construct self‐cloning strains with an increased copy number of ILV5. Via transformation, ILV2 was replaced with the sulfometuron methyl (SM) resistance gene SMR1B, which differs by a single nucleotide, to create SM‐resistant transformants. The wort fermentation test, using the SC‐ILV5‐homo inserted transformant, confirmed a consecutive reduction in VDK and a shortening period during which VDK was reduced to within the threshold. The concentrations of ethyl acetate, isoamyl acetate, isoamyl alcohol, 1‐propanol, isobutyl alcohol and active isoamyl alcohol (flavour components) were not changed when compared with the parent strain. We successfully constructed self‐cloning brewer's yeast in which SC‐ILV5 was homo‐inserted. Using the transformed yeast, the concentration of VDK in fermenting wort was reduced, whereas the concentrations of flavour components were not affected. This genetically stable, low VDK‐producing, self‐cloning bottom‐fermenting yeast would contribute to the shortening of beer maturation time without affecting important flavour components produced by brewer's yeast. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
In the case of sake, ethyl caproate and isoamyl acetate are considered to be closely associated with flavor. Various mutant yeast strains producing a higher level of flavor compounds (ethyl caproate and/or isoamyl acetate) than the parent strain were isolated by ethyl methane sulfonate treatment followed by global selection. Two of the mutants obtained also showed a high malate productivity. These mutants would be promising for practical sake fermentation.  相似文献   

11.
A novel breeding strategy for a high tyrosol‐producing sake yeast was developed by isolating an ethanol‐resistant mutant from a tryptophan auxotrophic mutant of a sake brewery yeast. Since tyrosol has antioxidant, cardioprotective and taste‐sharpening effects, increasing the tyrosol level of alcohol beverages could be beneficial in alcohol production. Since the transporters of aromatic amino acids are degraded by several stresses and mutants defective in the synthesis of aromatic amino acids are sensitive to ethanol, it was hypothesized that the degradation of these transporters should be inhibited in ethanol resistant mutants isolated from the auxotrophic mutants of aromatic amino acids, and that the uptake of aromatic amino acids would be increased in the mutants. Consistent with this hypothesis, sake was brewed with the ethanol‐resistant mutant of a tryptophan auxotrophic mutant and the sake was found to contain a lesser content of tyrosine and a higher content of tyrosol relative to the sake brewed with the parental strains. The taste of the sake brewed with the mutant strain could be discriminated from the sake brewed with the parental strains, probably because of the altered concentrations of tyrosol and certain amino acids and organic acids. The results suggest that combining the isolation of an ethanol‐resistant mutant and an auxotrophic mutant is an effective method to breed a brewing strain with a modified metabolism of these substances. Copyright © 2012 The Institute of Brewing & Distilling  相似文献   

12.
Abstract

Sake, its history in Japan, the unique brewing process, and microbes concerned with the characteristics of flavor are described. The main flavor components derived mainly from the fermentation process are higher alcohols, isoamyl acetate, ethyl caproate, and phenethyl acetate. These are the compounds which give an accent to the flavor of sake. The esters are formed mainly by yeast during mash fermentation. Isoamyl acetate is produced by the reaction of acetyl CoA with isoamyl alcohol catalyzed by alcohol acetyl transferase. The enzyme, bound to the yeast cell membrane, is unstable to heat and unsaturated fatty acids. The ester formation is regulated by the amount of isoamyl alcohol produced. Acyl CoA alcohol acyl transferease catalyzes the formation of ethyl caproate from caproyl CoA and ethanol. In this reaction, the amount of caproyl CoA supplied is important. The mechanism of higher alcohol formation, including the biosynthetic pathway of amino acids and its feedback regulation, is discussed. Finally, breeding and the practical use of sake yeast with high productivity of higher concentrations of higher alcohols and esters are described.  相似文献   

13.
Several auxotrophic mutants requiring branched chain amino acids (valine, leucine, or isoleucine) were isolated in a strain of Montrachet wine yeast. They were tested for their ability to produce lowered amounts of higher alcohols (‘fusel oil’: isobutyl, active amyl, and isoamyl alcohols) in grape juice fermentations. One strain which required leucine was especially good in this respect. This mutation is recessive and is the result of a deficiency for the enzyme α-isopropylamate dehydratase. In trial fermentations with this mutant, the resulting wines contained up to 20% less total fusel oil and 50% less isoamyl alcohol compared to the parent Montrachet strain. An experienced taste panel did not discern any gross degradation of taste quality in wine made with the mutant strain compared to that made with the parent strain. The mutant strain could be of commercial importance in preparation of distilling material for alcoholic beverages since the reduced fusel oil content would not require any special distillation procedures which are normally used to avoid the unpleasant flavour associated with concentrated higher alcohols. Reduction of the isoamyl alcohol content is particularly significant since this fusel oil component is usually present in the highest amount.  相似文献   

14.
15.
An alcoholic beverage (35.4% v/v ethanol) was produced by distillation of the fermented broth obtained by continuous whey fermentation with a lactose-fermenting yeast Kluyveromyces marxianus. Forty volatile compounds were identified in this drink by gas chromatography. Higher alcohols were the most abundant group of volatile compounds present, with isoamyl, isobutyl, 1-propanol, and isopentyl alcohols being found in highest quantities (887, 542, 266, and 176 mg/l, respectively). Ethyl acetate had the highest concentration (138 mg/l) among the esters. Besides higher alcohols and esters, other components, including aldehydes, acids and terpenes were also identified in the whey spirit. Considering that the quality of an alcoholic beverage can be evaluated by the relation between isoamyl alcohol/2-methyl-1-propanol and 2-methyl-1-propanol/1-propanol, which have to be higher than unity, it was concluded that a novel spirit of acceptable organoleptic characteristics can be produced by cheese whey continuous fermentation with K. marxianus.  相似文献   

16.
ABSTRACT. Strain CCU-N16-18143 was derived with N-methyl-N'-nitro-N-nitrosoguanidine (NTG) treatment three times from a wild strain of yeast CCU-16 as a mutant to produce more delicious and intense flavors for nutrient beverage from glucose medium. This mutant was identified by computer system as Saccharomyces sp. the optimal culture medium for the production of flavor is one liter of medium containing 100 g glucose, 12 g ammonium nitrate, 3 g yeast extract, 1 g magnesium sulfate, 1 g ammonium sulfate, 2 g potassium dihydrogen phosphate, pH: 3.5. the optimal culture conditions are: temperature: 30C; agitation: 150 rpm., 50 ml medium in 500-ml Hinton flask; incubation time: 96 h. the volatile flavor compounds in the culture medium were analyzed by capillary gas chromatography and capillary gas chromatography-mass spectrometry. It was found that more volatile compounds were produced by mutant strain than wild strain. the content of isoamyl alcohol increased from 7.76 to 61.64%, whereas ethyl alcohol decreased from 85.25 to 5.77%.  相似文献   

17.
Mead is a traditional drink that contains 8%–18% (v/v) of ethanol, resulting from the alcoholic fermentation of diluted honey by yeasts. Mead fermentation is a time-consuming process and the quality of the final product is highly variable. Therefore, the present investigation had two main objectives: first, to determine the adequate inoculum size of two commercial wine-making strains of Saccharomyces cerevisiae for the optimisation of mead fermentation; and second, to determine if an increase in yeast pitching rates in batch fermentations altered the resulting aroma profiles. Minor differences were detected in the growth kinetics between the two strains at the lowest pitching rate. With increasing pitching rates net growth of the strain ICV D47 progressively decreased, whereas for the QA23 the increasing inoculum size had no influence on its net growth. The time required to reach the same stage of fermentation ranged from 24 to 96 h depending on the inoculum size. The final aroma composition was dependent on the yeast strain and inoculum size. Fourteen of the twenty-seven volatile compounds quantified could contribute to mead aroma and flavour because their concentrations rose above their respective thresholds. The formation of these compounds was particularly pronounced at low pitching rates, except in mead fermented by strain ICV D47, at 106 CFUs/mL. The esters isoamyl acetate, ethyl octanoate and ethyl hexanoate were the major powerful odourants found in the meads. The results obtained in this study demonstrate that yeast strain and inoculum size can favourably impact mead's flavour and aroma profiles.  相似文献   

18.
By application of the high-efficiency loss of heterozygosity (HELOH) method for disrupting genes in diploid sake yeast (Kotaka et al., Appl. Microbiol. Biotechnol., 82, 387–395 (2009)), we constructed, from a heterozygous integrant, a homozygous diploid that overexpresses the alcohol acetyltransferase gene ATF2 from the SED1 promoter, without the need for sporulation and mating. Under the conditions of sake brewing, the homozygous integrant produced 1.4 times more isoamyl acetate than the parental, heterozygous strain. Furthermore, the homozygous integrant was more genetically stable than the heterozygous recombinant. Thus, the HELOH method can produce homozygous, recombinant sake yeast that is ready to be grown on an industrial scale using the well-established procedures of sake brewing. The HELOH method, therefore, facilitates genetic modification of this rarely sporulating diploid yeast strain while maintaining those characteristics required for industrial applications.  相似文献   

19.
The ratio of organic acids in sake mash is a very important factor affecting the taste of alcoholic beverages. To alter the organic acid composition in sake and investigate the mechanism of producing organic acids in sake mash, we examined the effect of NAD+-dependent isocitrate dehydrogenase (IDH) activity deficiency in sake yeast by disrupting the IDH1 or IDH2 gene. Two haploid strains (MATa or MATa genotype) isolated from sake yeast Kyokai no. 701 (K701) were disrupted using the aureobasidin A resistant gene (AUR1-C) as a selection marker. These disruptants were defective in the activity of IDH and failed to grow on medium containing glycerol as a sole carbon source. Sake meter, alcohol concentration, and glucose consumption in sake brewed with the disruptants were reduced in comparison with those of the parental strains. The production of citrate (including isocitrate), malate, and acetate by the disruptants was increased, but succinate production was reduced to approximately half in comparison with the parental strains. These results indicate that approximately half the amount of succinate in sake mash is produced via the oxidative pathway of the TCA cycle in sake yeast. While the diploid strain constructed by mating haploid disruptants for the IDH gene exhibited stronger fermentation ability than the haploid disruptants, almost similar profiles of components in sake were obtained for both strains.  相似文献   

20.
Three strains of Williopsis saturnus var. saturnus were employed for the production of natural isoamyl acetate (the character impact compound of banana flavour) using sugar beet molasses as the carbon source and batch cultivation at 25°C under anaerobic conditions. Of the three strains, strain HUT 7087 was the best producer of isoamyl acetate, producing 20.7 mg/L. Sugar beet molasses was deemed to be an acceptable carbon source for the production of this flavour compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号