首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the literature a mathematical model has been developed for the direct borohydride fuel cells by Verma et al. [1]. This model simply simulates the fuel cell system via kinetic mechanisms of the borohydride and oxygen. Their mathematical expression contains the activation losses caused by the oxidation of the borohydride and the concentration overpotential increased by the reduction of oxygen. In this study a direct borohydride/peroxide fuel cell has been constructed using hydrogen peroxide (H2O2) as oxidant instead of the oxygen. Therefore we created an advanced model for peroxide fuel cells, including the activation overpotential of the peroxide. The goal of our model is to provide the information about the peroxide reduction effect on the cell performance. Our comprehensive mathematical model has been developed by taking Verma’s model into account. KH2O2 used in the advanced model was calculated as 6.72 × 10−4 mol cm−2 s−1 by the cyclic voltammogram of Pt electrode in the acidic peroxide solution.  相似文献   

2.
Ag and AgNi powders were comparatively tested as anodic catalysts for direct electrochemical oxidation of borohydride. Discharge experiments demonstrated for the first time that both Ag and AgNi electrode can catalyze the electrooxidation of borohydride, delivering a high capacity of >7e>7e oxidation for a borohydride ion. In comparison, AgNi-catalyzed borohydride fuel cells exhibited a higher discharge voltage and capacity, possibly due to a combined action of the electrocatalytic activity of Ni component for borohydride electrooxidation and the depression of borohydride hydrolysis by Ag atoms.  相似文献   

3.
A direct borohydride fuel cell (DBFC) is constructed using a cathode based on iron phthalocyanine (FePc) catalyst supported on active carbon (AC), and a AB5-type hydrogen storage alloy (MmNi3.55Co0.75Mn0.4Al0.3) was used as the anode catalyst. The electrochemical properties are investigated by cyclic voltammetry (CV), linear sweep voltammetry (LSV), etc. methods. The electrochemical experiments show that FePc-catalyzed cathode not only exhibits considerable electrocatalytic activity for oxygen reduction in the BH4 solutions, but also the existence of BH4 ions has almost no negative influences on the discharge performances of the air-breathing cathode. At the optimum conditions of 6 M KOH + 0.8 M KBH4 and room temperature, the maximal power density of 92 mW cm−2 is obtained for this cell with a discharge current density of 175 mA cm−2 at a cell voltage of 0.53 V. The new type alkaline fuel cell overcomes the problem of the conventional fuel cell in which both noble metal catalysts and expensive ion exchange membrane were used.  相似文献   

4.
In this study, the effects of the additive thiourea (TU) have been investigated under steady state/steady-flow and uniform state/uniform-flow systems with the aim of minimizing the anodic hydrogen evolution on Pd in order to increase the performance of a direct borohydride fuel cell. The fuel cell has consisted of Pd/C anode, Pt/C cathode and Na+ form Nafion membrane as the electrolyte. There has been a small improvement in peak power density and fuel utilization ratio by addition of TU (1.6 × 10−3 M) into the sodium borohydride solution; the peak power densities of 14.4 and 15.1 mW cm−2, and fuel utilization ratios of 21.6% and 23.2% have been obtained without and with TU, respectively.  相似文献   

5.
The electrochemical behaviour of dimethylamine borane and borohydride on platinum electrodes was investigated by cyclic voltammetry and polarization curves in discharges processes. Several overlapping peaks appear in the domain of hydrogen oxidation, i.e., in the potential range of −1.25 V to −0.50 V versus Ag/AgCl, mainly with the borohydride. This behaviour is associated with the hydrolysis of BH4 or (CH3)2NHBH3. As a consequence of secondary reactions the borohydride and dimethylamine borane oxidation in 3 M NaOH solution shows, respectively, a four- to six-electron process and a four- to five-electron process in direct fuel cells. The direct oxidation of the borohydride exhibits a peak at about −0.07 V versus Ag/AgCl, while the dimethylamine borane peak is at about −0.03 V versus Ag/AgCl. For the 0.04 M concentration the borohydride displays a power density of 31 W m−2 which is 16% higher than that of the dimethylamine borane.  相似文献   

6.
In this study, direct borohydride fuel cells (DBFCs) potentialities are evaluated. These emerging systems make it possible to reach maximum powers of about 200 mW cm−2 at room temperature and ambient air (natural convection) with high concentrated borohydride solutions. On the other hand, a part of borohydride hydrolyses during cell operating which leads to hydrogen formation and fuel loss: the practical capacity represents about only 18% of the theoretical one. In order to improve fuel efficiency, thiourea is tested as an inhibitor of the catalytic hydrolysis associated with BH4 electro-oxidation on Pt. The practical capacity is drastically improved: it represents about 64% of the theoretical one. Against, electrochemical performances (IE curves) are affected by the presence of thiourea.  相似文献   

7.
When a fuel cell (FC) utilizes liquid fuels directly, a few complications arise due to the conductance or the potential conductance of the fuel. Fuel cell stacks are typically designed in a bipolar fashion so that the voltage of individual cells can be added up in series to give an adequate and convenient output voltage. The conductivity of fuels brings about two risks if the bipolar stack is not properly designed and engineered. On one hand, the conductive liquid fuel may short circuit the neighboring cells of a bipolar FC stack with traditional integrated fuel manifolds. On the other hand, the conductive fuel may pass a high voltage to some parts of the cell through an ordinary manifold, causing excessive corrosion. These issues need to be addressed through a cell-isolation fuel distribution network (FDN). The function of such an FDN is to increase the shunting resistance of neighboring cells, so as to maintain a reasonable open circuit voltage. Also, the presence of a gas phase in the liquid fuel during cell operation affects fuel circulation and therefore needs to be considered in the FDN design. On the plus side, a liquid fuel, in contact with high surface area FC electrodes, functions as a super-capacitor, giving the FC an excellent pulse overload capacity. Also the fuel itself is a fair coolant, enabling high power density at minimal increase in stack weight. These considerations are applied to a kilowatt NaBH4/H2O2 fuel cell stack to generate the desired operational characteristics.  相似文献   

8.
Nano-particulate gold-based materials along with commercial gold supported over carbon were investigated as possible alternative electrocatalysts for the oxidation of borohydride in alkaline media. Cyclic voltammetry experiments conducted on these materials show very high activity for the nano-particulate materials compared to the commercial materials despite a lower loading of gold (0.8 mg cm−2 compared to 1.0 mg cm−2) and lower interface area in the nano-particulate materials. The presence of BH4 appears to have detrimental effect on the performances of the air-electrode for oxygen reduction. The current density recorded at −0.6 V versus Hg/HgO has decreased by a factor of six for silver nitrate AC65 while for MnO2 a reduction in the current density by a factor of two only was observed. The implementation of the nano-particulate gold-based materials and the air-electrodes along with a low-cost anionic membrane in QinetiQ's tubular cell design has led to power density exceeding 28 mW cm−2 obtained at ambient temperature.  相似文献   

9.
10.
A direct hydrazine fuel cell using H2O2 as the oxidizer has been developed. The N2H4/H2O2 fuel cell is assembled by using Ni-Pt/C composite catalyst as the anode catalyst, Au/C as the cathode catalyst, and Nafion membrane as the electrolyte. Both anolyte and catholyte show significant influences on cell voltage and cell performance. The open-circuit voltage of the N2H4/H2O2 fuel cell reaches up to 1.75 V when using alkaline N2H4 solution as the anolyte and acidic H2O2 solution as the catholyte. A maximum power density of 1.02 W cm−2 has been achieved at operation temperature of 80 °C. The number of electrons exchanged in the H2O2 reduction reaction on Au/C catalyst is 2.  相似文献   

11.
In this study, carbon-supported PtNi alloys with different molar ratios synthesized by borohydride reduction were evaluated as anode catalysts for sodium borohydride fuel cells. The higher angle shifts of the Pt peaks from X-ray diffraction (XRD) account for the alloy formation between Pt and Ni. The negative shift of Pt 4f XPS spectrum for PtNi(7:3)/C also indicates an electronic structural change of Pt in the alloyed PtNi/C catalyst. The cyclic voltammetry (CV) results show that the PtNi(x:10 − x)/C catalysts are electrochemically active toward borohydride oxidation at the potential range between −0.6 V and +0.1 V vs. Hg/HgO electrode, and PtNi(7:3)/C presents the strongest peak current density among three catalysts with different molar ratios. The results of amperometric it curves (it) tests also show that the steady-state current density is the highest on PtNi(7:3)/C among alloy catalysts. The higher electrocatalytic activity of the PtNi(7:3)/C can be attributed to the alloy effect and the Pt electronic structure change due to the addition of Ni.  相似文献   

12.
In this work, the effects of sodium borohydride concentration on the performance of direct borohydride fuel cell, which consisted of Pd/C anode, Pt/C cathode and Na+ form Nafion® membrane as the electrolyte, have been investigated in steady state/steady-flow and uniform state/uniform-flow systems. The experimental results have revealed that the power density increased as the sodium borohydride concentration increased in the SSSF system. Peak power densities of 7.1, 10.1 and 11.7 mW cm−2 have been obtained at 0.5, 1 and 1.5 M, respectively. However, the performance has decreased when the sodium borohydride concentration has been increased, and the fuel utilization ratios of 29.8%, 21.6% and 20.4% have been obtained at 0.5, 1 and 1.5 M, respectively in the USUF system.  相似文献   

13.
14.
Renewable energy sources have become an important issue due to global warming and the diminishing of fossil fuel resources that have become a major problem for the world. Fuel cells are one of the most important renewable energy systems. The use of metal foams within the scope of commercialization and cost reduction of fuel cells attracts attention today. Metal foams are a material that provides excellent performance in many engineering applications, especially in fuel cells, thanks to the high permeability provided by the porous structure, narrow flow channels, large specific surface area, capillary, and diffusive forces. Among the metallic foams, the focus is on the use of aluminum foam, due to its low cost, superior strength, and thermal conductivity performance properties as well as ease of production. As an alternative to gas diffusion layers, the use of different metallic foam materials in fuel cell systems and performance improvements were analyzed. The use of aluminum foams as flow distributors and electrodes in the anode diffusion layer, which is one of the DBHYP components, provides significant increases in cell performance, cell weight, and volume. It has been found that open-cell metallic foams used in fuel cell systems cause an increase in performance due to their positive effects on the amount of catalyst coating, flow characteristics, and electrical properties.  相似文献   

15.
In this study, the influences of different operational conditions such as cell temperature, sodium hydroxide concentration, oxidant conditions and catalyst loading on the performance of direct borohydride fuel cell which consisted of Pd/C anode, Pt/C cathode and Na+ form Nafion membrane as the electrolyte were investigated. The experimental results showed that the power density increased by increasing the temperature and increasing the flow rate of oxidant. Furthermore, it was found that 20 wt.% of NaOH concentration was optimum for DBFC operation. When oxygen was used as oxidant instead of air, better performance was observed. Experiments also showed that electrochemical performance was not considerably affected by humidification levels. An enhanced power density was found by increasing the loading of anodic catalyst. In the present study, a maximum power density of 27.6 mW cm−2 at a cell voltage of 0.85 V was achieved at 55 mA cm−2 at 60 °C when humidified air was used.  相似文献   

16.
Similar to MXene, MAB is a group of 2D ceramic/metallic boride materials which exhibits unique properties for various applications. However, these 2D sheets tend to stack and therefore lose their active surface area and functions. Herein, an amorphous cobalt nickel boride (Co–Ni–B) nanocomposite is prepared with a combination of 2D sheets and nanoparticles in the center to avoid agglomeration. This unique structure holds the 2D nano-sheets with massive surface area which contains numerous catalytic active sites. This nanocomposite is prepared as an electrocatalyst for borohydride electrooxidation reaction (BOR). It shows outstanding catalytic activity through improving the kinetic parameters of BH4? oxidation, owing to abundant ultrathin 2D structure on the surface, which provide free interspace and electroactive sites for charge/mass transport. The anode catalyst led to a 209 mW/cm2 maximum power density with high open circuit potential of 1.06 V at room temperature in a miniature direct borohydride fuel cell (DBFC). It also showed a great longevity of up to 45 h at an output power density of 64 mW/cm2, which is higher than the Co–B, Ni–B and PtRu/C. The cost reduction and prospective scale-up production of the Co–Ni–B catalyst are also addressed.  相似文献   

17.
The carbon supported Pt hollow nanospheres were prepared by employing cobalt nanoparticles as sacrificial templates at room temperature in aqueous solution and used as the anode electrocatalyst for direct borohydride-hydrogen peroxide fuel cell (DBHFC). The physical and electrochemical properties of the as-prepared electrocatalysts were investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), cyclic voltammetry (CV), chronoamperometry (CA), chronopotentiometry (CP) and fuel cell test. The results showed that the carbon supported Pt nanospheres were coreless and composed of discrete Pt nanoparticles with the crystallite size of about 2.8 nm. Besides, it has been found that the carbon supported Pt hollow nanospheres exhibited an enhanced electrocatalytic performance for BH4 oxidation compared with the carbon supported solid Pt nanoparticles, and the DBHFC using the carbon supported Pt hollow nanospheres as electrocatalyst showed as high as 54.53 mW cm−2 power density at a discharge current density of 44.9 mA cm−2.  相似文献   

18.
Water management is an important challenge in portable direct methanol fuel cells. Reducing the water and methanol loss from the anode to the cathode enables the use of highly concentrated methanol solutions to achieve enhanced performances. In this work, the results of a simulation study using a previous developed model for DMFCs are presented. Particular attention is devoted to the water distribution across the cell. The influence of different parameters (such as the cathode relative humidity (RH), the methanol concentration and the membrane, catalyst layer and diffusion media thicknesses) over the water transport and on the cell performance is studied. The analytical solutions of the net water transport coefficient, for different values of the cathode relative humidity are successfully compared with recent published experimental data putting in evidence that humidified cathodes contribute to a decrease on the water crossover. As a result of the modelling results, a tailored MEA build-up with the common available commercial materials is proposed to achieve low methanol and water crossover and high power density, operating at relatively high methanol concentrations. A thick anode catalyst layer to promote methanol oxidation, a thin anode gas diffusion layer as methanol carrier to the catalyst layer and a thin polymer membrane to lower the water crossover coefficient between the anode and cathode are suggested.  相似文献   

19.
Direct methanol fuel cells have potentially high energy density if the balance of plant and fuel losses can be kept to a minimum. CO2 accumulation in the fuel tank can lower the efficiency and performance of closed-tank methanol fuel cells. This report discusses the implementation of a passive CO2 vent fabricated with poly(1-trimethyl silyl propyne) and 1,6-divinylperfluorohexane. The performance of the membrane as a selective vent for carbon dioxide in the presence of methanol has been studied at various operating conditions. First, the selectivity of the vent membrane improved with temperature. Second, the activation energy for permeation through the polymer membrane corresponded to diffusion controlled transport of CO2 and sorption controlled transport for methanol vapor. The activation energy for CO2 transport through the poly(1-trimethyl silyl propyne) and 1,6-divinylperfluorohexane membrane was less than that for a pure poly(1-trimethyl silyl propyne) membrane. Finally, the polymer had a high selectivity for carbon dioxide compared to both liquid and vapor phase methanol.  相似文献   

20.
The performance and characteristics of direct sodium-borohydride/hydrogen-peroxide (NaBH4/H2O2) fuel cells are studied in the context of potential applications for air independent propulsion for outer space and underwater. Due to the existence of ocean (sea) water as a natural heat sink, this new fuel cell technology is best suited for underwater propulsion/power systems for small scale high performance marine vehicles. The characteristics of such a power system are compared to other options, specifically for the underwater scenario. The potential of this fuel cell is demonstrated in laboratory experiments. Power density over 1.5 W cm−2, at 65 °C and ambient pressure, have been achieved with the help of some unique treatments of the fuel cell. One such treatment is an in-situ electroplating technique, which results in electrodes with power density 20–40% higher, than that of the electrodes produced by the ordinary ex-situ electroplating method. This unique process also makes repair or reconditioning of the fuel cell possible and convenient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号