首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用应力比为0.1,频率为3Hz的正弦波分别在室温和1300℃水氧环境对2DC/SiC复合材料进行了拉一拉疲劳试验.结果表明,若取循环基数为10^5,室温和高温水氧环境下的疲劳极限分别为244.8MPa和93.3MPa,高温下的水氧腐蚀是材料失效的主要原因.根据疲劳断口特征分析得出以下结论:在高温水氧环境下,足够大的外载荷将会显著削弱SiO2层的封填裂纹效果,导致氧化性气氛通过外力拉开的微裂纹扩散进入材料内部.外载荷越大,气体在材料内部的扩散越快,复合材料的疲劳寿命越短。  相似文献   

2.
SiC涂层C/C复合材料在1300℃湿氧环境中的疲劳行为   总被引:1,自引:1,他引:0       下载免费PDF全文
在半圆柱型氧化模式的基础上,建立了具有SiC涂层C/C复合材料在湿氧环境中的疲劳失效模型。在高温湿氧环境下,C/C复合材料的疲劳失效主要受到氧化深度的控制,而影响氧化深度的主要参数是涂层表面裂纹的宽度。对此疲劳失效模型,讨论分析实验温度以及外加应力对裂纹宽度的影响,考虑了疲劳载荷引起的材料模量变化对裂纹宽度的影响。在 90、105、120、135和150 MPa疲劳应力下的材料在1300℃ 湿氧环境中的平均寿命分别为48660、32645、22078、12332和4786循环。进行了实验数据与模型计算值的对比,实测寿命与预测结果吻合良好。另外,本模型在外加应力较大、实验时间较短条件下的预测数据与实验结果最为接近。  相似文献   

3.
采用液相浸渍炭化技术,在压力为75MPa下制备出4D-C/C复合材料,并进行高温热处理。研究静态和动态加载条件下,材料沿厚度方向的弯曲性能及断裂行为。结果表明,循环次数达到10×105次、频率为10 Hz时,材料的临界弯曲疲劳极限是静态弯曲强度的80%。静态弯曲加载情况下,C/C复合材料失效机制取决于试样底层炭纤维的取向。循环疲劳载荷作用下,其失效机制包括基体开裂、纤维-基体界面弱化及纤维断裂。复合材料在循环加载过程中界面结合强度降低,并释放内应力,故增强了纤维拔出以及复合材料的假塑性,疲劳加载后其剩余弯曲强度增加10%左右,而模量降低。疲劳载荷引起材料基体缺陷和裂纹数量的增加及纤维断裂,削弱了长度方向上的热膨胀,使材料热膨胀系数降低。  相似文献   

4.
C/SiC复合材料应力氧化失效机理   总被引:2,自引:0,他引:2  
研究了干氧和湿氧两种气氛、疲劳和蠕变两种应力下C/SiC复合材料在1300℃的应力氧化行为. 试验结果和断口形貌SEM分析表明: C/SiC复合材料在疲劳应力下比在蠕变应力下具有更强的抗氧化能力和更长的持续时间; 干氧环境中的蠕变试样以C纤维氧化失效为主; 水蒸气的存在加剧了SiC基体的氧化, 并且使受蠕变应力的C/SiC复合材料以SiC基体氧化失效为主.  相似文献   

5.
为研究陶瓷基复合材料的低周疲劳失效机理,通过试验和细观分析对其疲劳特性进行了探讨。研究了室温下加载循环数对2D针刺C/SiC复合材料拉-拉疲劳剩余强度的影响,并采用光学显微镜和扫描电子显微镜对该材料的断口形貌和微观结构进行了观察。结果表明:2D针刺C/SiC复合材料具有较好的抗疲劳特性,在85%极限拉伸强度(UTS)载荷下的循环数超过106;随着加载循环数的增加,剩余强度先增大然后下降。断口分析表明:纤维拔出长度随着加载循环数的增加而增加,说明在疲劳加载过程中,纤维/基体的界面结合强度降低,减缓了材料内部受力的不均匀性,提高了材料的承载能力,使2D针刺C/SiC复合材料出现了疲劳强化现象。   相似文献   

6.
采用频率为10 Hz、 应力比为0.1的正弦波研究了室温下循环次数对二维炭毡C/C复合材料(2D炭毡C/C复合材料)的弯曲疲劳强度的影响, 并利用偏光显微镜和扫描电子显微镜对该材料的热解碳组织形貌以及疲劳前后的断口形貌和微观结构进行了观察。结果表明, 2D炭毡C/C复合材料的热解碳结构由光滑层和各向同性层组成, 其疲劳极限为76.5 MPa, 是静态弯曲强度的90%。在不同循环周次的疲劳载荷作用后, 材料的剩余弯曲强度和韧性都得到了提高。在疲劳加载过程中, 纤维/基体的界面结合强度发生弱化, 纤维的协同承载能力得到提高, 使C/C复合材料出现了疲劳强化现象。   相似文献   

7.
在拉-拉载荷下测定了(Al2O3)f/Al复合材料的疲劳寿命(S-N)曲线。通过夭折试验以及SEM疲劳断口和纵截面组织结构分析,研究了复合材料的疲劳损伤模式。研究结果表明,(Al2O3)f/Al复合材料的疲劳极限为750MPa,远高于SCS-6碳化硅纤维增强钛基复合材料。该复合材料兼有钛基和树脂基纤维复合材料疲劳损伤的特点,高应力下由单个裂纹的起源和生长导致复合材料的失效;低应力下,疲劳损伤模式包括纤维劈裂、众多基体裂纹和单个基体裂纹的横向扩展。其中纤维劈裂是主控机制。其更高的疲劳极限可归因于低应力下纤维的纵向劈裂。  相似文献   

8.
姚思远  陈秀华 《复合材料学报》2018,35(10):2706-2714
为研究三维机织复合材料在拉伸-压缩循环载荷下的疲劳性能,对材料进行了应力比R=-1的疲劳试验。在不同的载荷水平下,分别进行了纬向和经向两类拉压疲劳试验。试验获得了试样在疲劳载荷下的滞回曲线和全过程中剩余刚度比随寿命的变化曲线。结果表明,在拉伸-压缩循环载荷下,三维机织复合材料的疲劳损伤过程主要包含3个阶段,分别发生基体破坏、纱线横向裂纹扩展和纱线的最终断裂。基体的破碎和开胶、垂直于载荷方向排布的纱线撕裂和沿载荷方向排布的纱线断裂是试样内部的主要失效模式。试验还获得了纬向和经向拉压疲劳的拟合S-N曲线,可应用于工程中对该型材料进行疲劳寿命估算。该型材料的疲劳寿命在低应力区和高应力区均显示出较小的分散性,双对数坐标系下的拟合S-N曲线具有较好的线性度。  相似文献   

9.
主要介绍了近年来国内外C/C复合材料疲劳性能的研究进展,并根据疲劳载荷类型系统地总结了C/C复合材料疲劳性能的主要研究方法,归纳出C/C复合材料疲劳损伤的主要特点,即多种损伤形式、高的疲劳极限、剩余强度增加以及实验测试数据分散性大。在此基础上,提出了进一步研究C/C复合材料的疲劳性能值得关注的课题。  相似文献   

10.
以乙醇和甲烷为前驱体,采用化学气相渗透工艺制备了三维五向编织C/C复合材料。利用偏光显微技术分析了复合材料的微观结构,考察了复合材料的静态弯曲性能和疲劳行为,研究了不同循环加载周期对复合材料弯曲强度和力学行为的影响。结果表明:采用混合前驱体可成功制备高织构3DC/C复合材料,材料的平均弯曲强度为379.2 MPa,其疲劳极限为静态弯曲载荷的80.3%。加载循环应力后, C/C复合材料的弯曲强度在不同周次均有所提升,循环105周后弯曲强度的增幅达16.8%。材料弯曲承载时的"屈服区"随着循环次数的增加出现先增大后减小的变化趋势,这与材料疲劳过程中纤维与基体、基体与基体的结合状态有关。  相似文献   

11.
采用缠绕成型的玻璃纤维增强聚合物基复合材料管型试样,对复合材料在拉扭双轴载荷作用下的多轴疲劳行为进行了实验研究。实验结果表明,复合材料多轴疲劳失效是基体中疲劳损伤累积的结果,最终的失效裂纹通常平行于纤维方向;根据实验中得出的应力应变曲线、疲劳寿命曲线,重点讨论了不同缠绕角复合材料的多轴疲劳寿命随双轴载荷比例、平均应力等因素的变化规律,为今后的多轴疲劳理论研究提供了依据。  相似文献   

12.
应用相变增韧、相变-晶须复合及相变-颗粒复合三种方式来改善氧化铝陶瓷的力学性能,研究了陶瓷基复合材料的疲劳特性。 在循环压缩载荷作用下,陶瓷材料的应力集中处(如缺口)会产生垂直于压应力轴的疲劳裂纹,随循环周次的增加,裂纹的扩展由快到慢,最终完全停止。循环压缩疲劳裂纹的形成机理是较大的应力集中使材料内出现以微裂纹为主要形式的不可逆损伤,在随后的卸载过程中,不可逆损伤区产生很高的残余拉应力,使疲劳裂纹形核并逐渐扩展。 陶瓷材料在四点弯曲循环载荷作用下,疲劳裂纹具有较长的亚临界扩展过程。裂纹护展速率与循环载荷的最大应力强度因子K_(max)及应力强度因子幅度△K都有关,且随载荷频率的降低及载荷波形由三角波变为正弦波,裂纹扩展速率增加。陶瓷材料四点弯曲疲劳裂纹的亚临界扩展是材料内损伤逐渐累积的结果。疲劳过程中材料通过形成微裂纹及裂纹分叉、克服增强物的阻碍及裂纹表面的桥接与互锁作用、产生裂尖微区内的塑性变形及部分稳定ZrO_2的相变等方式来消耗能量,在材料内造成以微裂纹为主要形式的微观损伤,从而弱化了材料,使疲劳裂纹得以亚临界扩展。 陶瓷材料在1050℃高温下的强度约为其室温强度的一半。陶瓷材料的高温循环疲劳是高温静载效应与循环载荷效应的迭加,1050℃下,循  相似文献   

13.
对[±20°]钢丝帘线增强的橡胶复合材料在拉伸循环载荷下的疲劳损伤累积进行了研究.结果表明:在载荷控制的疲劳过程中,材料的周期最大应变发展曲线呈现明显的三阶段规律.帘线端头处基体裂纹的出现是宏观疲劳损伤的初始,损伤的累积表现为裂纹数量增加、帘线/基体脱粘和层间裂纹的扩展.以动蠕变为参量建立了线性疲劳损伤累积模型,该模型能够较好地预报两级加载条件下材料的第二级疲劳寿命.  相似文献   

14.
通过分析失重率、显微形貌变化讨论了原子氧辐照对C/C复合材料以及SiC基体改性C/C复合材料(C/C-SiC)的损伤机制; 并通过热膨胀系数(CTE)、热扩散率(TD)以及弯曲强度等性能的变化, 进一步讨论了原子氧辐照损伤对材料热物理及力学性能影响。结果表明, C/C复合材料受原子氧辐照损伤是物理化学综合作用, 属于冲击诱发-增强表面化学刻蚀; SiC组元表现出良好的抗原子氧侵蚀性能, 阻碍了原子氧向材料内部侵蚀, 但是SiC组元在更长时间辐照后出现机械破损; C/C复合材料在原子氧辐照下失重率呈线性增加, 而C/C-SiC复合材料失重率小于C/C复合材料且增长幅度越来越小; C/C复合材料和C/C-SiC复合材料的整体结构性能在辐照损伤后发生了一定变化。  相似文献   

15.
纤维增强复合材料界面疲劳裂纹扩展的模拟研究   总被引:3,自引:0,他引:3  
脱粘是纤维增强复合材料界面裂纹扩展的主要表现形式.基于剪切筒模型和常用的实验加载方式,研究了纤维增强复合材料中纤维与基体界面在拉-拉循环荷载作用下的裂纹扩展.借助描述疲劳裂纹扩展的Paris公式,得到了疲劳裂纹扩展速率、扩展长度以及界面上摩擦系数与加载次数的关系.在分析中,考虑了疲劳加载引起的脱粘界面的损伤及损伤分布的不均匀性,同时还考虑了材料的泊松效应.  相似文献   

16.
介绍了空间氧化环境和低温环境对C/SiC复合材料性能的影响。研究表明:空间原子氧环境对C/C-SiC材料中的C相剥蚀严重;原子氧氧化对C/SiC复合材料的力学性能影响较小。原子氧与分子氧的叠加氧化对C/SiC复合材料的性能影响较大。在空间低温条件下,C/SiC复合材料的拉伸强度会先降低,然后又逐渐恢复;该材料破坏模式与其高温条件下的破坏模式相同。同时提出了当前研究中存在的问题,并展望了未来的研究方向。  相似文献   

17.
碳/碳复合材料作为理想的高温结构材料,在服役过程中不可避免地涉及疲劳加载的情况,其疲劳行为的研究具有十分重要的意义.通过对近年来C/C复合材料疲劳行为的研究情况进行的综述,总结出了疲劳特点以及疲劳过程中材料微观结构的变化特点.并在此基础上,对今后的研究工作发表了一些看法.  相似文献   

18.
对 钢丝帘线增强的橡胶复合材料在拉伸循环载荷下的疲劳损伤累积进行了研究。结果表明:在载荷控制的疲劳过程中,材料的周期最大应变发展曲线呈现明显的三阶段规律。帘线端头处基体裂纹的出现是宏观疲劳损伤的初始,损伤的累积表现为裂纹数量增加、帘线/基体脱粘和层间裂纹的扩展。以动蠕变为参量建立了线性疲劳损伤累积模型,该模型能够较好地预报两级加载条件下材料的第二级疲劳寿命。  相似文献   

19.
为研究编织复合材料在静载及疲劳载荷下的分层特性及损伤演化模式,对斜纹编织CF3052/3238A碳纤维/环氧树脂复合材料II型静开裂及疲劳开裂性能进行了测试。结果表明:斜纹编织CF3052/3238A碳纤维/环氧树脂复合材料裂纹扩展行为受纬向纤维影响存在周期性局部受阻现象,分层破坏模式除层间开裂外还存在纬向纤维脱粘;斜纹编织CF3052/3238A碳纤维/环氧树脂复合材料裂纹扩展速率符合Paris公式,不同加载控制模式下编织复合材料疲劳驱动力增长规律存在本质区别:恒幅疲劳载荷下斜纹编织复合材料疲劳驱动力呈抛物线型单调增长;而恒幅疲劳位移下复合材料疲劳驱动力随分层长度呈波峰型分布;采用基于载荷控制模式和位移控制模式下的疲劳驱动力模型,可对斜纹编织CF3052/3238A碳纤维/环氧树脂复合材料进行损伤演化表征,其表征效果良好,具有工程参考价值。   相似文献   

20.
孔隙是C/C复合材料结构中重要的组成部分,它直接影响着材料的疲劳行为,因此,在研究C/C复合材料的疲劳行为时,考察基体以及界面中孔隙的变化具有重要的意义.综述了C/C复合材料原始孔隙结构的特点,分析了在疲劳加载过程中碳/碳复合材料孔隙结构的演化规律,强调了孔隙结构变化对碳/碳复合材料疲劳强化所作出的积极贡献,进而为其疲劳机理的研究提供依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号