首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanical properties of gradient and multilayered TiAlSiN hard coatings   总被引:1,自引:0,他引:1  
Multicomponent coatings based on different metallic and non-metallic elements possess the combined benefit of individual components leading to further improvement of coating properties. In this study, monolayered Ti-Al-N, multilayered Ti-Al-N/TiN, gradient Ti-Al-Si-N, and multilayered Ti-Al-Si-N/TiN coatings were synthesized by using a cathodic-arc evaporation (CAE) system. In addition to Ti, Ti33Al67 and Al88Si12 cathodes were used for the deposition of Ti-Al-N, and Ti-Al-Si-N coatings, respectively. The gradient Ti0.50Al0.43Si0.07N, and multilayered Ti0.50Al0.43Si0.07N/TiN with nanograins separated by disordered grain boundaries possessed lower residual stress (− 2.8 ~ − 4.8 GPa) than that of monolayered Ti-Al-N (− 6.8 GPa) and multilayered Ti-Al-N/TiN coatings (− 5.7 GPa). The highest hardness was obtained for the gradient Ti0.50Al0.43Si0.07N (38 ± 2 GPa) with Ti/(Ti + Al + Si) content ratio being 0.5. On the contrary, the multilayered Ti0.50Al0.43Si0.07N/TiN possessed the highest H3/E?2 ratio of 0.182 ± 0.003 GPa, indicating the best resistance to plastic deformation, among the studied coatings.  相似文献   

2.
Junguo Gao  Yedong He  Wei Gao 《Thin solid films》2012,520(6):2060-2065
In this paper, electro-codeposition based on electrophoretic deposition and electrolytic deposition was developed to prepare Al2O3-Y2O3 composite thin film coatings on a γ-TiAl based alloy. Scanning electron microscope observations showed that the Al2O3-Y2O3 composite coatings were very compact and consisted of uniform nano-particles after microwave sintering. Cyclic oxidation at 900 °C indicated that the Al2O3-Y2O3 composite thin film coatings improved the oxidation and scale spallation resistance of the γ-TiAl alloy significantly. The superior oxidation and spallation resistance of the coatings were attributed to the suppression of outward diffusion of Ti and Al and inward diffusion of O, the promoted selective oxidation of Al in the γ-TiAl alloy, and the improved adhesion of oxide scale induced by the Al2O3-Y2O3 composite thin film coatings.  相似文献   

3.
Good oxidation resistance of hard coatings is important for cutting tools. Ti0.5Al0.5N coating and Ti0.5Al0.4Si0.1N coating were deposited by cathodic arc evaporation and their oxidation behavior at 850 °C, 900 °C and 1000 °C was compared. The effect of Si addition on the oxidation resistance of Ti0.5Al0.4Si0.1N was investigated. Results show that the oxidation resistance of Ti0.5Al0.4Si0.1N coating at 850-1000 °C is superior to Ti0.5Al0.5N coating. The improved oxidation resistance of Ti0.5Al0.4Si0.1N coating can be ascribed to the combined action of Al2O3 and SiO2 barrier layer, the reduction of columnar structure and the refinement of grains. In particular, Si addition increases the diffusion coefficient of Al and promotes the preferential formation of Al2O3 barrier layer.  相似文献   

4.
A new technique to produce microscale Ti3O5 nano- and microfiber meshes is proposed. When a 3 wt% carbon-doped TiO2 film on Si(1 0 0) was annealed at 1000 °C in wet nitrogen (0.8%H2O), the amorphous TiO2 phase gave rise to crystalline phases of λ-Ti3O5 (75%) and rutile + trace of TiO2−xCx (25%). From Raman and FTIR Spectroscopy results, it was concluded that rutile is formed at the inner layer located at the interface between the mesh and the Si that was located away from the surface such that the meshes of nano- and microfibers are predominantly composed of Ti3O5 grown from the reaction of rutile with Si to form Ti3O5 and SiO2. On the other hand, it was noteworthy that the microscale mesh of nano- and microfibers showed increased photoluminescence compared with amorphous TiO2. The PL spectrum which had a broad band in the visible spectrum, fitted as three broad Gaussian distributions centered at 571.6 nm (∼2.2 eV), 623.0 nm (∼2.0 eV) and 661.9 nm (∼1.9 eV).  相似文献   

5.
H. Ezura  K. Ichijo  K. Yamamoto  T. Suzuki 《Vacuum》2008,82(5):476-481
(Ti,Cr,Al,Si)N films were deposited by cathodic arc method using TiCrAlSi alloy cathodes. It was found that the microstructures of (Ti,Cr,Al,Si)N were closely related to (Al+Si) content. The crystal structure of (Ti,Cr,Al,Si)N was NaCl-type structure up to the (Al+Si) content of 0.60, where it changed to a hexagonal structure. The maximum hardness of 33 GPa was obtained at the lowest (Al+Si) content of 0.56, still in the cubic structure. The micro-hardness decreased down to 28 GPa as the crystal structure changed from NaCl-type to wurtzite-type.To investigate the thermal stabilities of (Ti,Cr,Al,Si)N, the films were annealed in a vacuum furnace. In Ti0.20Cr0.20Al0.55Si0.05N with cubic structure, the phase segregation occurred by annealing at over 900 °C, while Ti0.22Cr0.22Al0.44Si0.12N remained in cubic phase up to 1000 °C. The micro-hardness of Ti0.20Cr0.20Al0.55Si0.05N increased and that of Ti0.22Cr0.22Al0.44Si0.12N decreased at 1000 °C. Ti0.20Cr0.11Al0.58Si0.11N with a cubic and hexagonal mixture phase held its (c,h)-mixture phase up to 1000 °C, while there was an indication of an increase both in micro-hardness and in cubic ratio after annealing.In this paper, the micro-hardness and microstructure of (Ti,Cr,Al,Si)N are discussed as a function of annealing temperature and investigated by X-ray diffraction and electron microscopy.  相似文献   

6.
Masaaki Naka  Jicai Feng 《Vacuum》2008,83(1):223-225
SiC to SiC were reacted by Ti foil at high temperature of 1673 K in vacuum. Ti reacted with SiC, and formed many reaction phases between SiC and Ti. At 1673 K SiC reacted at a reaction time of 0.5 ks or longer. From the SiC many reaction zones of Ti3SiC2, Ti5Si3CX, Ti5Si3CX + TiC, and TiC + Ti were formed. Ti binary compound of TiC and Ti ternary compounds of Ti3SiC2, and Ti5Si3CX, were formed. The principle of the reaction zones was thermodynamically discussed by the corresponding chemical potential diagram.  相似文献   

7.
High-k dielectric titanium silicate (TixSi1 − xO2) thin films have been deposited by means of an optimized sol-gel process. At the optimal firing temperature of 600 °C, the Ti0.5Si0.5O2 films are shown to exhibit not only a dielectric constant (k) as high as ∼ 23 but more importantly the lowest leakage current and dielectric losses. Fourier transform infrared spectroscopy shows an absorbance peak at 930 cm− 1, which is a clear signature of the formation of Ti-O-Si bondings in all the silicate films. The developed sol-gel process offers the required latitude to grow TixSi1 − xO2 with any composition (x) in the whole 0 ≤ x ≤ 1 range. Thus, the k value of the TixSi1 − xO2 films can be tuned at any value between that of SiO2 (3.8) to that of TiO2 (k ∼ 60) by simply controlling the TiO2 content of the films. The composition dependence of the dielectric constant of the TixSi1 − xO2 films is analyzed in the light of existing models for dielectric composites.  相似文献   

8.
Diamond chemical vapour deposition (CVD) on steel represents a difficult task. The major problem is represented by large diffusion of carbon into steel at CVD temperatures. This leads to very low diamond nucleation and degradation of steel microstructure and properties. Recent work [R. Polini, F. Pighetti Mantini, M. Braic, M. Amar, W. Ahmed, H. Taylor, Thin Solid Films 494 (2006) 116] demonstrated that well-adherent diamond films can be grown on high-speed steels by using a TiC interlayer deposited by the PVD-arc technique. The resulting multilayer (TiC/diamond) coating had a rough surface morphology due to the presence of droplets formed at the substrate surface during the reactive evaporation of TiC. In this work, we first present an extensive Raman investigation of 2 μm, 4 μm and 6 μm thick diamond films deposited by hot filament CVD on TiC interlayers obtained by the PVD-arc technique. The stress state of the diamond was dependent on both the films thickness and the spatial position of the coating on the substrate. In fact, on the top of TiC droplets, the stress state of the diamond was much lower than that of diamond in flatter substrate areas. These results showed that diamond films deposited on rough TiC interlayers exhibited a wide distribution of stress values and that very large compressive stress exists in the diamond film grown on flat regions of steel substrates with a TiC interlayer. Diamond films could accommodate stresses as large as 10 GPa without delamination.  相似文献   

9.
La-Si thin films were deposited on stainless steel substrates by magnetron sputtering from pure La and Si targets. The Si/(Si + La) atomic ratio in the films was varied from 43.2 to 59.3% by adjusting the discharge current on the La target. The films had a homogeneous chemical composition down to the substrate and sharp interfaces. Annealing the films in air at 1173 K promotes the formation of apatite-structure La9.33Si6O26 and the diffusion of different species from the film to the substrate and vice-versa, resulting in broadening the interfaces. X-Ray diffraction showed that all the as-deposited films had an amorphous structure. The formation of the LaSi2 phase at intermediate temperatures was observed for the films deposited with higher Si contents while the films deposited with lower Si contents remained amorphous up to the start of the apatite structure crystallization process. The lanthanum silicate apatite-like phase (La9.33Si6O26) was obtained only after annealing at 1173 K, excepted for the film with the lower Si content which is already partially crystallized after annealing at 1073 K. Quite pure La9.33Si6O26 was obtained only after annealing the film with the highest Si content (Si/(Si + La) = 59.3%) although the theoretical Si/(Si + La) atomic ratio for apatite structure lanthanum silicate is 39%. For the other films, La2O3 was always detected when the lanthanum silicate phase was formed. Both phenomena clearly resulted from the strong diffusion of silicon excess towards the stainless steel substrate.  相似文献   

10.
《Advanced Powder Technology》2014,25(3):1094-1102
High-energy ball milling was applied with subsequent heat treatment for synthesizing nanoparticles of TiC powders by the carbothermic and carbosilisisothermic reduction of titanium oxide (rutile type). The milling procedure involved milling of TiO2/C and TiO2/Si/C powders at room temperature in an argon atmosphere. The progress of the mechanically induced solid state reaction was monitored using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD results showed that TiC nanoparticles were duly synthesized in the TiO2/C system at 1700 °C in 60-h milled samples. In the non-milled samples, although heated at the same temperature, only a minor amount of a lower degree of titanium oxide (Ti3O5) was observed to form. Further, in other non-milled samples, but with Si initially present, despite heating to 1550 °C no TiC phase was detected. However, using Si as a reducing agent accompanied by graphite, after 60 h ball milling, only Si remained as a distinguishable crystalline phase. Further, heat treatment of activated powders by forming the interphase compounds (such as Ti3Si5 and Ti5Si3) remarkably decreased the synthesis temperature to 900 °C for the 60 h milled samples.  相似文献   

11.
In the present study Ti5Si3–Al2O3 nanocomposite was synthesized by a displacement reaction between Al and TiO2 in ball milling of TiO2, Al and Si powders. The effect of milling time and heat treatment temperatures were also investigated. The structural changes of powder particles during mechanical alloying were investigated by X-ray diffraction (XRD). Morphology and microstructure of powders were characterized by scanning electron microscopy (SEM). It was found that after 10 h of MA, the reaction between Al and TiO2 initiated in a gradual mode and after about 45 h of milling, the reaction was successfully completed. The final product consisted of Ti5Si3 intermetallic compound with a crystallite size of 13 nm and amorphous Al2O3. Heat treatment of this structure at 1050 °C led to the crystallization of Al2O3 and ordering of Ti5Si3. The crystallite size of Ti5Si3 and Al2O3 after annealing at 1050 °C for 1 h remained in nanometer scale. So the final product appeared to be stable upon annealing.  相似文献   

12.
Al2O3/TiAl composites were successfully fabricated from powder mixtures of Ti, Al, TiO2 and Cr2O3 by a hot-press-assisted exothermic dispersion method. The effect of the Cr2O3 addition on the microstructures and mechanical properties of Al2O3/TiAl composites was characterized, and the results showed that the Rockwell hardness, flexural strength and fracture toughness of the composites increased as the Cr2O3 content increased. When the Cr2O3 content was 2.5 wt%, the flexural strength and the fracture toughness attained peak values of 925 MPa and 8.55 MPa m1/2, respectively. This improvement of mechanical properties was due to the more homogeneous and finer microstructure developed from the addition of Cr2O3 and an increase in the ratio of α2-Ti3Al to γ-TiAl matrix phases.  相似文献   

13.
Advanced PVD coatings for metal cutting applications must exhibit a multifunctional property profile including high hardness, chemical inertness and high temperature stability. Recently, ternary Al-Cr-O thin films with mechanical properties similar or superior to conventional aluminium oxide thin films have been suggested as potential materials meeting such demands. These coatings can be deposited at moderate temperatures in PVD processes. In this work, new quaternary Al-Cr-O-N coatings are suggested as alternative for offering thin film materials of high strength, hardness and even toughness. A combinatorial approach to the synthesis of Al-Cr-O-N thin films by means of reactive r.f. magnetron sputtering is presented. A thorough phase analysis of deposited coatings covering a wide range of elemental compositions revealed a well-defined phase transition from a corundum-type α-(Al1 − x,Crx)2 + δ(O1 − y,Ny)3 structure to a CrN-type f.c.c.-(Al1 − x,Crx)1 + θ(O1 − y,Ny) structure as a function of the Al/Cr ratio and the nitrogen gas flow ratio. Detailed results on the coatings composition, constitution and microstructure are discussed compared to ternary Al-Cr-O thin films deposited by reactive r.f. magnetron sputtering under nearly identical conditions.  相似文献   

14.
The electrodeposited two-phase γ-Ni + γ′-Ni3Al and single-phase γ′-Ni3Al coatings with and without CeO2 particles were developed by the conversion of electrodeposited Ni-Al or Ni-Al-CeO2 films with dispersed Al microparticles in Ni matrix into γ′-Ni3Al by vacuum annealing at 800 °C for 3 h. SEM/EDAX and TEM characterizations showed that the CeO2-dispersed γ-Ni + γ′-Ni3Al or γ′-Ni3Al coatings exhibited finer grains compared to the CeO2-free Ni-Al alloy coatings. The oxidation at 1000 °C for 20 h showed that for a given Al content the addition of CeO2 significantly improved the oxidation resistance of the electrodeposited Ni-Al alloy coatings. The effect of CeO2 particles on the microstructure and oxidation behavior of the electrodeposited Ni-Al alloy coating is discussed in detail.  相似文献   

15.
Pb0.97La0.02(Zr0.95Ti0.05)O3 antiferroelectric thin films with thickness of 500 nm were successfully deposited on TiO2 buffered Pt(1 1 1)/Ti/SiO2/Si(1 0 0) and Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrates via sol-gel process. Microstructure of Pb0.97La0.02(Zr0.95Ti0.05)O3 thin films was studied by X-ray diffraction analyses. The antiferroelectric nature of the Pb0.97La0.02(Zr0.95Ti0.05)O3 thin films was confirmed by the double hysteresis behaviors of polarization and double buffer fly response of dielectric constant versus applied voltage at room temperature. The capacitance-voltage behaviors of the Pb0.97La0.02(Zr0.95Ti0.05)O3 films with and without TiO2 buffer layer were studied, as a function of temperature. The temperature dependence of dielectric constant displayed a similar behavior and the Curie temperature (Tc) was 193 °C for films on both substrates. The current caused by the polarization and depolarization of polar in the Pb0.97La0.02(Zr0.95Ti0.05)O3 films was detected by current density-electric field measurement.  相似文献   

16.
Polyimide (PI) nanocomposites with different proportions of Al2O3 were prepared via two-step reaction. Silicon nitride (Si3N4) was deposited on PI composite films by a RF magnetron sputtering system and used as a gas barrier to investigate the water vapor transmission rate (WVTR). The thermal stability and mechanical properties of a pure PI film can be improved obviously by adding adequate content of Al2O3. At lower sputtering pressure (4 mTorr), the PI/Al2O3 hybrid film deposited with Si3N4 barrier film exhibits denser structure and lower root mean square (RMS) surface roughness (0.494 nm) as well as performs better in preventing the transmission of water vapor. The lowest WVTR value was obtained from the sample, 4 wt.%Al2O3-PI hybrid film deposited with Si3N4 barrier film with the thickness of 100 nm, before and after bending test. The interface bonding, Al-N and Al-O-Si, was confirmed with the XPS composition-depth profile.  相似文献   

17.
A novel composite filler alloy was developed by introducing Si3N4p (p = particles) into Ag-Cu-Ti filler alloy. The brazing of Si3N4 ceramics and TiAl intermetallics was carried out using this composite filler alloy. The typical interfacial microstructure of brazed joints was: TiAl/AlCu2Ti reaction layer/Ag(s,s) + Al4Cu9 + Ti5Si3p + TiNp/TiN + Ti5Si3 reaction layer/Si3N4. Effects of Si3N4p content in composite filler alloy on the interfacial microstructure and joining properties were investigated. The distribution of Ti5Si3p and TiNp compounds in Ag-based solid solution led to the decrease of the mismatch of the coefficient of thermal expansion (CTE) and the Young's modulus between Si3N4 and TiAl substrate. The maximum shear strength of 115 MPa was obtained when 3 wt.% Si3N4p was added in the composite filler alloy. The fracture analysis showed that the addition of Si3N4p could improve the mechanical properties of the joint.  相似文献   

18.
Superhard nanocomposite coatings of TiAlN/Si3N4 with varying silicon contents were synthesized using reactive direct current (DC) unbalanced magnetron sputtering. The Si and TiAl targets were sputtered using an asymmetric bipolar-pulsed DC power supply and a DC power supply, respectively, in Ar+N2 plasma. The structural and mechanical properties of the coatings were characterized using X-ray diffraction (XRD) and nanoindentation techniques, respectively. The elemental composition of the TiAlN/Si3N4 nanocomposite coatings was determined using energy-dispersive X-ray analysis and the bonding structure was characterized by X-ray photoelectron spectroscopy. The surface morphology of the coatings was studied using atomic force microscopy. The XRD data showed that the nanocomposite coatings exhibited (1 1 1) and (2 0 0) reflections of cubic TiAlN phase. The broadening of the diffraction peaks with an increase in the silicon content in the nanocomposite coatings, suggested a decrease in the average crystallite size. The TiAlN/Si3N4 nanocomposite coatings exhibited a maximum hardness of 43 GPa and an elastic modulus of 350 GPa at a silicon concentration of approximately 11 at%. The hardness and the elastic modulus of the nanocomposite coatings decreased significantly at higher silicon contents. Micro-Raman spectroscopy was used to characterize the structural changes as a result of heating of the nanocomposite coatings in air (400-850 °C) and in vacuum (900 °C). The Raman data of the nanocomposite coatings annealed in air and vacuum showed better thermal stability as compared to that of the TiAlN coatings. Similarly, the nanocomposite coatings deposited on mild steel substrates exhibited improved corrosion resistance.  相似文献   

19.
Sol-gel derived Pb40Sr60TiO3 (PST) thin film has been investigated as a diffusion barrier for integrating in PbZr30Ti70O3 (PZT) device structures on Si substrates. PST film was deposited on SiO2/Si substrate and annealed at a relatively low temperature range of 550-600 °C producing a crack-free, smooth and textured surface. Following deposition on PST/SiO2/Si template PZT thin film was crystallised exhibiting random grain orientations and an insertion of the bottom Pt/Ti electrode forming PZT/Pt/Ti/PST/SiO2/Si stacks promoted the preferred PZT (111) perovskite phase. PZT (111) peak intensity gradually decreased along with slight increase of the PZT (110) peak with increasing annealing temperature of the buffer PST film. The dielectric and ferroelectric properties of the PZT with barrier PST deposited at 550 °C were assessed. The dielectric constant and loss factor were estimated as 390 and 0.034 at 100 kHz respectively and the remnant polarisation was 28 µC/cm2 at 19 V. The performance of the PZT/PST device structures was compared to similar PZT transducer stacks having widely used barrier TiO2 layer.  相似文献   

20.
By means of the mechanical alloying method (MA), Ti-Al coatings were deposited on Ti substrates. Then, as-synthesized coatings were treated by pulsed argon plasma with energy up to 185 J/cm2. Irradiation of the Ti-Al MA-coating with pulsed argon plasma beams with energy density higher than 135 J/cm2 resulted in melting of the near-surface layer that in turn initiated the liquid-phase reaction between Ti and Al to form the Al3Ti compound. Melting led to smoothing of the coating structure. The coating microstructure and volume fraction of Al3Ti phase was conditioned by plasma energy. The thickness of the modified layer was several microns. Phase composition of plasma-treated coatings depended on its element composition. The plasma treatment of the Ti-Al-Si-C and Ti-Al-W-C coatings with energy of 150 J/cm2 led to formation of Ti5Si3 and TiC along with Al3Ti compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号