首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
基于神经网络的PMSM自适应滑模控制   总被引:7,自引:0,他引:7  
结合滑模控制和神经网络各自的优点,对永磁同步电机(PMSM)提出了一种基于神经网络的PMSM自适应滑模控制方案.首先设计了带积分操作的滑模变结构位置控制器,通过递归神经网络的在线学习来实时估计系统参数变化和外部负载扰动等不确定性的界限,减小滑模控制器的控制量.进而,在滑模控制器中又引入饱和函数取代符号函数,进一步减弱"抖振"现象.理论分析和实验仿真对比研究的结果表明所提出方法具有优越的动态性能和鲁棒性.  相似文献   

2.
针对被控对象的参数时变和外部扰动问题,本文融合神经网络的万能逼近能力和自适应控制技术,并结合分数阶微积分理论,提出了基于神经网络和自适应控制算法的分数阶滑模控制策略.本文采用等效控制的方法设计滑模控制律,并利用神经网络的万能逼近能力估测控制律的变化,结合自适应控制算法和分数阶微积分理论抑制传统滑模控制系统的抖震,同时根据Lyapunov稳定性理论分析了系统的稳定性,最后给出了实验结果.实验结果表明,本文提出的基于神经网络和自适应控制算法的分数阶滑模控制系统,能保持滑模控制器对系统外部扰动和参数变化鲁棒性的同时,也能有效地抑制抖震,使得系统获得较高的控制性能.  相似文献   

3.
针对具有外部扰动和系统参数不确定的机械臂轨迹跟踪控制问题,提出了一种改进的自适应神经网络滑模跟踪控制方法.首先建立了三自由度(DoF)机械臂动力学模型,分别采用计算力矩法和基于改进趋近律的神经滑模控制法控制其名义部分和非名义部分.所提方法结合了径向基函数(RBF)神经网络与基于趋近律的滑模控制,使控制系统自适应地补偿机...  相似文献   

4.
分数阶Chen混沌系统的径向基函数神经滑模控制   总被引:1,自引:0,他引:1  
针对带有参数扰动和外部干扰的分数阶Chen混沌系统, 提出一种径向基函数(RBF)神经滑模控制方法. 设计滑模切换函数, 将其作为RBF神经网络的唯一输入, 网络的权值可依据滑模趋近条件在线调整. 基于Lyapunov稳定性理论, 分析了该方法的稳定性. 仿真结果表明该控制方法简化了常规神经网络控制结构的复杂性, 削弱了滑模控制的抖振程度, 对参数扰动和外部干扰具有较好的鲁棒性.  相似文献   

5.
参数变化及外部不确定性干扰等因素对永磁同步电机(PMSM)驱动控制系统影响较大,针对这一问题,提出一种基于RBF神经网络的分数阶互补滑模控制方法。在建立PMSM数学模型的基础上,采用RBF神经网络对外部干扰进行逼近估计。设计基于饱和函数的分数阶互补滑模控制器,并将RBF神经网络估计的干扰引入控制器中,以抵消外部干扰对系统的影响。理论证明,该控制策略在对外部不确定性干扰进行有效抑制的同时保证系统跟踪误差收敛。通过仿真验证所提方法的有效性。  相似文献   

6.
基于Backstepping的倒立摆鲁棒跟踪控制   总被引:1,自引:0,他引:1  
针对内部参数不确定及存在外部干扰的非线性倒立摆系统,提出了基于Backstepping方法的滑模变结构控制律,并且采用RBF神经网络逼近系统不确定非线性函数,同时引入滑模误差对其神经网络权值进行在线自适应调整,使神经网络的逼近速度加快,改善了动态性能.该控制律能保证倒立撰轨迹跟踪误差的快速收敛性以及对外部扰动和内部参数不确定的不敏感性,最后给出的仿真实例证明了该理论分析结果的正确性,控制效果良好.  相似文献   

7.
针对吸气式高超声速飞行器的轨迹控制问题,提出了一种基于自适应径向基函数(RBF)神经网络的滑模控制方法.建立了高超声速飞行器的纵向动态模型;设计了滑模控制器,利用自适应RBF神经网络对系统不确定项进行在线逼近,对滑模控制器进行补偿;基于李雅普诺夫的稳定性分析证明了闭环系统的稳定性.仿真结果表明:控制系统能够实现对于高超声速飞行器给定指令的有效跟踪.  相似文献   

8.
基于模型跟随的神经网络PID飞行控制律设计   总被引:2,自引:1,他引:1  
李丹  章卫国  刘小雄  孙勇 《计算机测量与控制》2009,17(9):1726-1727,1731
为了抑制飞行控制系统的外部扰动和建模误差,应用模型跟随自适应神经网络PID控制方法,进行飞行控制律设计。首先使用RBF神经网络进行飞行系统模型辨识,在线学习系统正向输入输出特性,辨识对象的Jacobian信息;然后应用BP神经网络实时在线调整PID参数,设计自适应神经网络PID控制器,控制飞行状态变量跟随模型输出;最后以F-8飞机纵向飞行控制系统为研究对象进行控制仿真。仿真结果表明,设计的控制器具有很强的自适应和抗干扰能力。  相似文献   

9.
永磁同步电机伺服系统的自适应模糊滑模控制   总被引:1,自引:0,他引:1  
针对永磁同步电机伺服系统的跟踪控制问题,提出了一种基于扰动观测器的自适应模糊滑模控制方法.通过扰动观测器估计等效扰动,改善了系统的动态性能和稳态性能,并且只需要等效扰动的变化有界,而不是为零,放宽了要求;根据模糊控制原理引入3条模糊规则,在保证滑模条件的前提下有效地削弱了抖振;采用自适应策略估计模糊系统参数的最优值,简化了控制器的设计.实验结果表明,与常规自适应模糊滑模控制相比,本文提出的控制方法不仅能够有效地减小跟踪误差,而且能够改善参数估计过程,保证了参数估计的有界性.  相似文献   

10.
对于一类非线性不确定系统,常规滑模控制器存在"抖振"现象和抗外部扰动作用不理想等问题.本文运用自适应模糊系统逼近滑模控制器参数,并引入一个自适应模糊参数连续逼近常规滑模控制器的开关函数,最后给出一种新型自适应模糊滑模控制器,该方法克服函数和边界层法的不足.仿真实验结果表明该方法增强非线性系统的抗干扰能力和鲁棒性,并大大地削弱系统的"抖振"现象.  相似文献   

11.
针对集装箱起重机这类欠驱动系统,基于智能控制的方法,提出一种基于滑模控制的防摇方法。该方法先通过对集装箱起重机的数学模型进行线性化运算,然后设计2种滑模控制器,对线性简化的模型进行滑模控制,通过李雅普诺夫方法来证明所进行的滑模控制的有效性。通过Matlab的Simulink来搭建仿真模型,仿真模型的图形结果验证了该方法对于集装箱起重机系统防摇控制方面的有效性。  相似文献   

12.
不确定非线性系统的高阶滑模控制器设计   总被引:1,自引:0,他引:1  
针对一类不确定非线性SISO系统,结合系统有限时间稳定理论与积分滑模控制理论,提出了一种新的高阶滑模控制器设计方法,改善了现有高阶滑模控制中存在的缺陷.积分滑模保证了系统初始时刻就具有抗扰能力,同时采用有限时间稳定观测器实现了高阶滑模的输出反馈控制.仿真结果表明该控制器可使系统在有限时间内收敛,并有效地减小了系统抖振.  相似文献   

13.
曹立佳  颜诗源  张胜修  仇召辉 《控制工程》2011,18(3):377-379,379
为解决某型飞行器的角度跟踪控制问题,设计了离散模糊滑模角度跟踪控制算法.以飞行器在空间的姿态运动方程为基础建立了其短周期运动模型.基于离散时间模糊滑模算法,设计了双入双出的模糊控制器,将滑模切换函数及其变化率作为模糊控制器的输入,以模糊控制器的二维输出信号为依据调整滑模趋近律的参数,该算法在减小了系统的抖振同时,保持了...  相似文献   

14.
基于干扰观测器的非线性不确定系统自适应滑模控制   总被引:2,自引:0,他引:2  
本文研究了一类基于非线性干扰观测器的多输入多输出非线性不确定系统的边界层自适应滑模控制方法并应用于近空间飞行器高精度姿态控制.考虑系统存在不确定性和外部干扰上界未知的情况,设计了基于干扰观测器的边界层自适应滑模控制器,以消除传统滑模控制中的"抖振"现象,使跟踪误差趋近于零.同时,利用李雅普洛夫方法严格证明了闭环系统的稳定性.最后将所研究的自适应滑模控制方法,应用于某近空间飞行器的姿态控制中,仿真结果表明在不确定性和外部干扰作用下能保证姿态控制的稳定性,对参数不确定具有较好的鲁棒性.  相似文献   

15.
基于滑模方法的桥式吊车系统的抗摆控制   总被引:5,自引:2,他引:5       下载免费PDF全文
针对桥式吊车这类欠驱动系统,提出一种基于滑模控制的抗摆方法.该方法将系统状态分成两组。构造出一种双层滑动平面.结合桥式吊车系统数学模型的特点。求取了总的滑模控制量并进一步设计了控制器的参数.采用Lyapunov方法,从理论上证明了各级滑动平面的稳定性.仿真结果验证了该方法对于桥武吊车系统抗摆控制的有效性.  相似文献   

16.
基于分数阶滑模控制技术的永磁同步电机控制   总被引:4,自引:0,他引:4  
针对传统整数阶滑模控制系统中存在的抖震问题,本文提出了分数阶滑模控制策略并应用到永磁同步电机的速度控制.传统滑模控制器中的开关函数由作用在切换流型或其整数阶导数面推广到其分数阶导数面,利用分数阶系统的特性,缓慢地传递系统的能量,有效地削减抖震.本文采用模糊逻辑推理算法,实现软开关切换增益的自整定.仿真和实验证明,本文提出的分数阶滑模控制系统不但能有效地削减抖震,而且能保持滑模控制器对系统参数变化和外部扰动的鲁棒性.  相似文献   

17.
In this paper, we study the containment control problem for multiple Lagrangian systems with multiple dynamic leaders in the presence of parametric uncertainties and external disturbances with fully distributed controllers under an undirected graph. We first propose a fully distributed adaptive sliding-mode control algorithm combined with distributed sliding-mode estimators, without requiring the upper bounds of the derivatives of the leaders’ states and any other global information to be known by each follower. To reduce the effect on the varying gain during the adaption mainly caused by the initial error, fully distributed adaptive time-varying sliding-mode control is presented for controller design. To tackle the chattering effect caused by the discontinuous controller, we further propose a fully distributed continuous adaptive controller, under which both the containment errors and the adaptive gains are ultimately bounded. Simulation results are given to illustrate the theoretical results.  相似文献   

18.
Pendubot的一种分层滑模控制方法   总被引:6,自引:1,他引:5  
针对Pendubot这类二阶欠驱动系统提出了一种分层滑模控制方法.该方法将系统状态分成两个子系统,分别构造滑动平面,采用Lyapunov方法求取总控制量,该控制量可以实现Pendubot的摆起控制,当系统接近平衡位置附近时,双层滑模控制器退化成单层控制器,这样又保证了Pendubot能够稳定在最终的平衡位置上.从理论上证明了各层滑动平面的渐近稳定性,并且通过仿真实验验证了该方法的有效性以及该控制器对各类扰动的自适应性.  相似文献   

19.
The theoretical development of a trajectory-tracking neural network controller based on the theory of continuous sliding-mode controllers is shown in the paper. Derived equations of the on-line adaptive neural network controller were verified on a real industrial direct-drive 3 degrees of freedom (D.O.F.) PUMA mechanism. The new neural network continuous sliding-mode controller was successfully tested for trajectory-tracking control tasks with respect to three criteria: convergence properties of the proposed control algorithm (high-speed cyclic movement, low-speed movement, high-speed PTP movement), adaptation capability of the algorithm to sudden changes in the manipulator dynamics (load), and generalization properties of the proposed control scheme. An interesting effect of the lower position error after a transient time at sudden load changes is shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号