首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transparent and highly oriented Ba2NaNb5O15 (BNN) thin films have been prepared by using metal alkoxides. A homogeneous precursor solution was prepared by the controlled reaction of NaOC2H5, Nb(OC2H5)5, and barium metal. The BNN precursor included a molecular-level mixture of NaNb(OC2H5)6 and Ba[Nb(OC2H5)6]2 in ethanol. The alkoxy-derived powder crystallized to a low-temperature phase, and then transformed to orthorhombic BNN (tungsten bronze) at 600°C. BNN precursor films on substrates crystallized to orthorhombic BNN at 800°C via the low-temperature phase. Highly (002) oriented BNN films of tungsten bronze structure were successfully prepared on MgO (100) substrates at 700°C by using BNN underlayer.  相似文献   

2.
The phase formation, densification behavior, and microstructure development of Sr2NaNb5O15 (SNN) ceramics in both 10 wt% acicular Sr2KNb5O15 (SKN) seed-containing and unseeded systems were investigated in this work. SNN ceramics were reactively sintered from SrNb2O6 and NaNbO3 powders. The results show that the acicular SKN seeds not only accelerate SNN phase formation but also promote the densification at lower temperature. In reactive sintering, the acicular SKN seeds prepared by the molten salt synthesis method can give rise to the formation of a liquid phase and provide the structural framework for the grain growth of ceramics, leading to the formation of large anisotropic grains (>80 μm) in ceramics sintered at 1340°C. However, there are no such large anisotropic grains obtained in the SKN-free system. Observation of the large anisotropic grain growth is explained by the liquid-phase-assisted growth mechanism. For comparison, the microstructure evolution in the system with 10 wt% SKN seed, which was prepared by the conventional mixed-oxide method and without acicular morphology, was also investigated to further support the new growth mechanism.  相似文献   

3.
Barium titanate precursors with Ba/Ti ratio 2:9 and 1:5 were prepared by first hydrolyzing titanium alkoxide and then mixing the resulting titania sol with a barium alkoxide-methanol solution. After drying, the xerogels of the precursors of barium titanates were sintered at temperatures from 700°C (4 h) to 1200°C (110 h or longer). Characterization of the product was performed using X-ray diffraction and laser Raman spectroscopy. At 700°C, BaTi5O11 was formed from the 1:5 precursor and a two-phase mixture of BaTi2O5 and BaTi5O11 was formed from the 2:9 precursor. After prolonged heating at 1200°C, the latter mixture converted to a single-phase material, Ba2Ti9O20.  相似文献   

4.
Alumina reacts with 1 atm of SiF4 below 660°± 7°C to form A1F3 and SiO2. At higher temperatures the product is a mixture of fluorotopaz and AIF3. Mixtures of fluorotopaz and AIF3 decompose in 1 atm of SiF4 at 973°± 8°C and form tabular α-alumina. The equilibrium vapor pressure of SiF4 above mixtures of fluorotopaz and AlF3 is log p (atm) = 9.198 – 11460/ T (K). Fluorotopaz itself decomposes at 1056°± 5°C in 1 atm of SiF4 to give acicular mullite, 2Al2O3.1.07SiO2. Alumina and mullite are stable in the presence of 1 atm of SiF4 above 973° and 1056°C, respectively. The phase diagram of the system SiO2-Al2O3-SiF4 shows only gas-solid equilibria.  相似文献   

5.
A high-aspect-ratio platelet sodium niobate (NaNbO3) was synthesized by a topochemical reaction. Plate-like layered-perovskite Bi2.5Na3.5Nb5O18 (BNN5) as a precursor was first prepared, and then Bi3+ in the precursor phase was replaced by Na+ through topotactic conversion and perovskite NaNbO3 formed at 950°C in NaCl molten salt. NaNbO3 crystals had an average length of 15 μm and a thickness of 0.5 μm. Scanning electron microscope and high-resolution transmission electron microscope analyses indicated that the retro-synthesis process of the desired perovskite NaNbO3 retained the morphological and structural features of the BNN5 precursor. It may be possible to synthesize other perovskite-structured templates using the same method.  相似文献   

6.
In the ternary system Li2O-Nd2O3-P205, part of the phase diagram relevant to the growth of single LindP4O12 (LNP) crystals was examined. LNP melts incongruently and decomposes into NdP3O9 and liquid at the peritectic temperature of 970°C. For the crystal growth, an Li2O-P2O5 mixture should be used as a flux. The melt compositions from which LNP nucleates were clarified.  相似文献   

7.
Ba2NaNb5O15 (BNN) thin films with a tungsten bronze structure were fabricated using a precursor solution that was synthesized from barium, sodium, and niobium alkoxides. Highly (002)-oriented BNN films were prepared successfully on Pt(100)/MgO(100) substrates at 700°C, using a BNN underlayer. X-ray pole-figure measurement showed that the BNN films that crystallized on Pt(100)/MgO(100) substrates had two in-plane orientations. The remanent polarization and coercive field of the BNN film (thickness of 1.0 µm) that was crystallized at 700°C were 12.3 µC/cm2 and 101 kV/cm, respectively, at –150°C (123 K). BNN films on fused silica substrates exhibited second harmonic generation upon irradiation with 1064 nm light.  相似文献   

8.
The decomposition products of YBa2Cu3O7-x depend on the composition of the molten chloride salt for exposure at 1173 K in air. The presence of dichloride salts such as CuCl2, CaCl2, or MgCl2 promote formation of CuO, Cu2Y2O5, and loss of barium to the chloride salt as BaCl2. Salts based on BaCl2 or containing LiCl result in YBa2Cu3O7-x decomposition products of Y2BaCuO5, CuO, and BaCl2. High barium activity in the salt supports formation of the Y2BaCuO5 phase and reaction of CO2 with the salt producing BaCO3. Decomposition is most sluggish in binary NaCl-KCl salts where minimal amounts of reaction or decomposition products are observed.  相似文献   

9.
The addition of Ta2O5, Nb2O5, and HfO2 enhanced the transformability of Y2O3-stabilized tetragonal ZrO2 polycrystal (Y-TZP), which was indicated by an increase in phase transformation temperatures and fracture toughness of Y-TZP. Comparison of the alloying effects of these oxides on the transformability and crystal structure of Y-TZP suggested that an alloying oxide which increases the c/a axial ratio (tetragonality) of TZP also increases the transformability. Empirical equations to predict the tetragonality are proposed. Calculated tetragonalities showed good agreement with measured values in the systems ZrO2-Y2O3-Ta2O5, -Nb2O5, and -HfO2.  相似文献   

10.
Phase relationships in the Si3N4–SiO2–Lu2O3 system were investigated at 1850°C in 1 MPa N2. Only J-phase, Lu4Si2O7N2 (monoclinic, space group P 21/ c , a = 0.74235(8) nm, b = 1.02649(10) nm, c = 1.06595(12) nm, and β= 109.793(6)°) exists as a lutetium silicon oxynitride phase in the Si3N4–SiO2–Lu2O3 system. The Si3N4/Lu2O3 ratio is 1, corresponding to the M-phase composition, resulted in a mixture of Lu–J-phase, β-Si3N4, and a new phase of Lu3Si5ON9, having orthorhombic symmetry, space group Pbcm (No. 57), with a = 0.49361(5) nm, b = 1.60622(16) nm, and c = 1.05143(11) nm. The new phase is best represented in the new Si3N4–LuN–Lu2O3 system. The phase diagram suggests that Lu4Si2O7N2 is an excellent grain-boundary phase of silicon nitride ceramics for high-temperature applications.  相似文献   

11.
The extents of the liquidus and solidus fields were determined for tungsten bronze-type solid solutions in the Na2O-BaO-Nb2O5 system by DTA and melt crystal growth experiments. Bronze-type solid solutions exist to 7.1Na2O-34.9BaO-58Nb2O5 in the Nb2O5-rich region and from 12Na2O-38BaO-50Nb2O5 to 4.6Na2O-45.4BaO-50Nb2O5 along the NaNbO2-BaNb2O6 join, which includes NaBa2Nb5O15=10Na2O-40BaO-50Nb2O6. There is little, if any, solid solubility of compositions with a deficiency of Nb2O5. Curie temperatures decline rapidly and dielectric constant peaks broaden with Nb2O5 substitution because the Nb:O ratio becomes greater than the octahedral 1:3 ratio. Useful ferroelectrics exist along the NaNbO3-BaNb2O6 join where the Nb:O ratio is 1:3. Large striae-free crystals, with less optical scattering than Czochralski-grown crystals, were grown from unseeded Na2O-rich melts (e.g. 15Na2O-37.5BaO-47.5Nb2O5) cooled from 1520° to 1300°C at 2°C/h. Annealing effects on these crystals whose compositions lie on the NaNbO3-BaNb2O6 join are discussed.  相似文献   

12.
Subsolidus phase relations in the binary system PbO-Ta2O5 were investigated by the quenching method. The following compounds were identified by X-ray diffraction patterns: PbO -2Ta2O5, PbO Ta2O6, 3PbO 2Ta2P5, 2PbO Ta2O6, 5PbO -2Ta2O5, and 3PbOTa2O5 The 1:1 compound has rhombohedral symmetry when it is prepared below 1150°C. Above this temperature, it yields an orthorhombic phase. Compounds with the same ratio of lead oxide to pentoxide exist in the systems PbO-Ta2O6 and PbO-Nb2O5.  相似文献   

13.
An intimate Ba-Al-Al2O3-SiO2 powder mixture, produced by high-energy milling, was pressed to 3 mm thick cylinders (10 mm diameter) and hexagonal plates (6 mm edge-to-edge width). Heat treatments conducted from 300° to 1650°C in pure oxygen or air were used to transform these solid-metal/oxide precursors into BaAl2Si2O8. Barium oxidation was completed, and a binary silicate compound, Ba2SiO4, had formed within 24 h at 300°C. After 72 h at 650°C, aluminum oxidation was completed, and an appreciable amount of BaAl2O4 had formed. Diffraction peaks consistent with hexagonal BaAl2Si2O8, BaAl2O4, β-BaSiO3, and possibly β-BaSi2O5 were detected after 24 h at 900°C. Diffraction peaks for BaAl2O4 and BaAl2Si2O8 were observed after 35 h at 1200°C, although SEM analyses also revealed fine silicate particles. Further reaction of this silicate with BaAl2O4 at 1350° to 1650°C yielded a mixture of hexagonal and monoclinic BaAl2Si2O8. The observed reaction path was compared to prior work with other inorganic precursors to BaAl2Si2O8.  相似文献   

14.
A mathematical model of the liquidus surface based on a reduced polynomial method was proposed for the system HfO2-Y2O3-Er2O3. The results of calculations according to this model agree fairly well with the experimental data. Phase equilibria in the system HfO2-Y2O3-Er2O3 were studied on melted (as-cast) and annealed samples using X-ray diffraction (at room and high temperatures) and micro-structural and petrographic analyses. The crystallization paths in the system HfO2-Y2O3-Er2O3 were established. The system HfO2-Y2O3-Er2O3 is characterized by the formation of extended solid solutions based on the fluorite-type (F) form of HfO2 and cubic (C) and hexagonal (H) forms of Y2O3 and Er2O3. The boundary curves of these solid solutions have the minima at 2370°C (15. 5 mol% HfO2, 49. 5 mol% Y2O3) and 2360°C (10. 5 mol% HfO2, 45. 5 mol% Y2O3). No compounds were found to exist in the system investigated.  相似文献   

15.
The phase equilibrium relations in the systems Y2O3-Al2O3 and Gd2O3-Fe2O3 were examined. Each system has two stable binary compounds. A 3:s molar ratio garnet-type compound exists in both systems. The 1:1 distorted perovskite structure is stable in the system Gd2O3-Fe2O3 but only metastable in the system Y2O3-AI2O3. This interesting example of metastable formation and persistence of a compound with ions of high Z/r values explains the discrepancies in the literature on the structure of the composition YA1O3. A new 2:1 molar ratio cubic phase has been found in the system Y2O3-A12O3. Since silicon can be completely substituted for aluminum in this compound, the aluminum ions are presumably in fourfold coordination.  相似文献   

16.
Highly [001] textured KSr2Nb5O15 (KSN) ceramics were fabricated by templated grain growth using acicular KSN template particles (5–15 wt%) and reactive matrix of SrNb2O6 and KNbO3. Excess Nb2O5 (1–1.5 wt%) was added as a liquid former. Increasing sintering temperature and time resulted in increased texture with a maximum texture fraction of 0.98. Dielectric, ferroelectric, and piezoelectric measurements indicate anisotropic properties that are close to single crystal values in the textured ceramics with the highest P r≈18 μC/cm2, P s≈25 μC/cm2, and d 33=65 pC/N obtained in the c -axis direction.  相似文献   

17.
Tetragonal ZrO2 ( t -ZrO2) solid solutions were prepared with addit ons of 2 mol% Y2O3 plus up to 0.45 mol% Nb2O5. The thermal expansion coefficients in both the a- and c -axis lattice directions increased with Nb2O5 alloying and the thermal expansion in the c -axis direction was greater than that in the a -axis direction over the entire composition range. This anisotropic thermal expansion behavior was related to the 4-fold coordination of Nb5+ with oxygen ions in t -ZrO2 solid solutions in the system ZrO2–Y2O3–Nb2O5. The fracture toughness continuously increased with Nb2O5 alloying and suggested that the c/a axial ratio is a more significant factor than the internal stress that arises from the thermal expansion anisotropy, in the determination of the transformability of t -ZrO2 in this system.  相似文献   

18.
The solid solubility of the aliovalent dopants Fe3+ and Nb5+ in the BaBi4Ti4O15 compound, a member of the family of Aurivillius bismuth-based layer-structure perovskites, has been studied using quantitative wavelength-dispersive spectroscopic microanalysis (SEM/EPMA) in combination with X-ray powder diffractometry (XRPD). The samples with nominal (starting) compositions corresponding to the chemical formulas BaBi4Ti4–4 X Fe4 X O15 and BaBi4Ti4–4 X Nb4 X O15 were prepared by hot forging a mixture of BaTiO3 and Bi4Ti3O12 with additions of Fe2O3 or Nb2O5 followed by a long annealing at 1100°C. The study showed that an excess charge introduced into the structure by the substitution of Ti4+ ions with aliovalent dopants was preferentially compensated by a change in the ratio of Ba2+ to Bi3+ ions in the host structure according to the general formulas of the solid solutions Ba1–4 X Bi4+4 X Ti4–4 X Fe'4 X O15 and Ba1+4 X Bi4–4 X Ti4–4 X Nb·4 X O15.  相似文献   

19.
Li2.06Nb0.18Ti0.76O3 powder has been successfully prepared at low temperatures via a facile and manageable, activated pretreatment on the inert raw Nb2O5. It is demonstrated that with triethanolamine, citric acid, and hydrogen peroxide, this simple pretreatment process could activate Nb2O5 efficiently. Pure Li2TiO3 solid solution phase was thus obtained by calcining the mixture of the activated Nb2O5, LiOH·H2O, and Ti(C4H9O)4 at temperatures as low as 650°C, which is about 200°C lower than that of the traditional solid-state method. To the best of our knowledge, this temperature is the lowest one for preparing Li2TiO3 solid solution. Additionally, the phase transformation and the morphology of the final powder are also discussed.  相似文献   

20.
(In0.67Fe0.33)2O3 with the bixbyite structure was synthesized via 28 GHz microwave irradiation, using multimode microwave heating equipment. Indium sesquioxide strongly absorbs 28 GHz microwaves, and this strong coupling with microwave energy can be used to drive a reaction with iron sesquioxide. A mixture of In2O3 and α-Fe2O3 powders (In:Fe ratio of 2:1) was irradiated with microwaves at a frequency of 28 GHz. The mixture was heated to 1400°C during the microwave irradiation. The formation of a solid solution was completed within a minute, which indicated a drastic enhancement of the reaction rate. Scanning electron microscopy revealed remarkable grain growth under microwave irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号