首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study presents and demonstrates results obtained from an half full-scale upflow fixed bed reactor (UFBR) treating a primary settled domestic sewage. This study used expanded clay with an effective size of 2.7 mm containing hematite and magnetite as a granular medium.The content of TSS in the effluent treated was always between 10 and 20 mg l−1 for bed depths ranging from 2 to 3 m and filtration rates of 3–6 m3m−2h−1.The profiles taken all along the reactor show that the activity of the biomass is constant over the whole height of the reactor. Moreover, an air/water volume ratio of 2:1 is amply sufficient to satisfy the oxygen demand of the biomass. The average removal efficiency based on the soluble COD remains virtually unchanged as a function of the filtration rate at about 70% of the influent. For a final BOD5 of 30 mg l−1, loadings of 4.5–8 kg BOD5m−3 can be applied. This corresponds to filtration rates of 3–6 m3m−2h−1. The removal efficiencies for BOD5 are then about 80%.After optimization of the backwashing conditions, the consumption of backwash water is about 5% of the volume of filtered water.Sludge measurements carried out during our experiments indicate an excess sludge production of 1 kg kg−1 BOD5 eliminated. The nature of these sludges is very similar to the biological sludges produced in the high rate activated sludge process.This study has made it possible to establish design parameters of an UFBR and to develop technology for applications. These results are applied to two wastewater treatment plants which began to operate in 1984: these plants serve population equivalents of 40,000 and 11,000.  相似文献   

2.
A pilot scale, six stage rotating biological contactor was used to evaluate the feasibility of this process for the stabilization of liquid animal manures. Total disc surface area was approx. 16.7 m2. Treatment efficiencies were determined at various waste strengths and influent flow rates.With loading rates of 14.7–322 g m−2 day−1, the average COD reduction was 61%. With loading rates of 4.88-24.4 g m−2 day−1, the average BOD5 reduction was 87%. Total nitrogen removal averaged approximately 30% for the entire study. Mixed liquor oxygen uptake rates were generally in excess of 80 mg 1−1 h−1.Clarified effluent was non-odorous and suitable to be reused for manure flushing or spray irrigation. Treatment was not sufficient to permit effluent discharge to surface waters.  相似文献   

3.
One of the major problems in applying reverse osmosis to wastewater reclamation is the potential plugging and simultaneous product flux-decline of the membranes. At present two techniques are prevalently used to minimize these deleterious effects. These are periodic clearing and extensive pretreatment. A third, and as yet untried, technique is presented here. It involves the in situ replacement of degraded membranes at projected replacement costs far below those for spirally wound units.Results presented here demonstrate that in situ replacement of cellulose acetate reverse osmosis membranes is technically sound. The membrane replacement cycle was repeated six times with average water fluxes of about 13 gal ft−2 day−1 and salt rejections of between 78 and 85 per cent. The regenerable unit was also tested on primary and secondary sewage effluent. Average water fluxes were between 3 and 10 gal ft−2 day−1, respectively, while salt rejections were between 66 and 73 per cent. Projected membrane costs are reduced from $4.06 ft−2 for a 6-in. dia. module to $0.08 ft−2 for a 72-in. dia. module. Thus, large diameter units become economically very attractive. Design and cost computer parametrization is also presented.  相似文献   

4.
Recommended loading rates for treating raw domestic wastewater by overland flow are 6.3–15 cm wk−1. Information provided in the literature yields little insight regarding the upper range of hydraulic loading rates that could be effectively treated by overland flow. Therefore, field investigations were conducted to evaluate the performance of the overland flow system at overland flow rates from 0.95 m3 day−1 m−1 width of slope (13 cm wk−1 to 4.15 m3 day−1 m−1 (57 cm wk−1).Preliminary treated municipal wastewater was pumped to overland flow slopes, each approx. 3.7 m wide and 36.5 m long. The slope of each plot was 2.5%. The cover crop consisted of a mixture of ryegrass, bluegrass and fescue grass. The plots were operated for 2 years at six different hydraulic loading rates.Effluent BOD5 concentration averages varied from 6 to 11 mg l−1. The reduction of influent BOD5 concentration ranged from 87 to 93%. Mean effluent suspended solids values were from 6 to 9 mg l−1 with reductions of influent concentrations of 91–95%. Hydraulic application rate had little effect on percent BOD5 or suspended solids removal.Total phosphorus reductions were minimal at all hydraulic application rates due to limited soil water contact.Ammonia concentration in the effluent ranged from 1 mg l−1 NH3-N at the 0.95 m3 day−1 m−1 (13 cm wk−1) applied flow rate of 11.7 mg l−1 NH3-N at the 4.15 m3 day−1 m−1 (57 cm wk−1) loading rate. Ammonia and nitrogen reductions decreased as the applied flow rate increased. Consequently, lower overland flow rates are necessary for nitrogen removal.The use of high-rate overland flow could potentially reduce the land necessary for this form of land application, if nutrient removal was not a local concern.  相似文献   

5.
Laboratory and field studies were carried out in order to define the conditions necessary for the precipitation of Al in natural waters of pH 4–6. It is concluded that if precipitation does occur it involves the formation of Al(oxy)hydroxide, not aluminosilicates or basic aluminium sulphates. The solubility product of the Al(oxy)hydroxide is highly temperature dependent (ΔH = −30.5 kcal−1). It is also sensitive to concentrations of SO42− and, more markedly, humic substances (HS); both of these decrease solubility, HS by more than an order of magnitude at a concentration of approx. 5 mg l−1 (equivalent to approx. 2.5 mg l−1 dissolved organic carbon). A semi-empirical equation is proposed that allows the prediction of the effective solubility product at different temperatures and at humic concentrations in the range 0–7 mg l−1. Of the 113 natural water samples analysed, only one was calculated to be oversaturated with respect to Al(oxy)hydroxide.  相似文献   

6.
The efficiency in removing 13 trace organics from wastewater was studied on an outdoor, prototype overland flow land treatment system. More than 94% of each substance was removed at an application rate of 0.4 cm h−1 (0.12 m3 h−1 m−1 of width). The % removals declined as application rates were increased. Removal from solution was described by first-order kinetics. A model based on the two-film theory was developed using three properties of each substance (the Henry's constant, the octanol-water partition coefficient and the molecular weight) and two system parameters (average water depth and residence time). The dependence of the removal process on temperature was consistent with the known dependence of Henry's constant and diffusivity on temperature. The model was tested on a second overland flow system.  相似文献   

7.
Continuous flow stirred reactors were used to evaluate the maximum denitrification specific removal rates for influent solutions made from NH4NO3, CaNO3, KNO3 and UO2 fuel fabrication waste water. Nitrate substrate concentrations ranged from 0.01 to 20 kg NO3/m3. Values for Umax (maximum specific substrate removal rate per unit mass of microorganisms per unit time, days−1) were determined using graphical solutions to the Lineweaver-Burk equations. For NH4NO3 solutions at nitrate substrate concentrations <6 kg NO3/m3 the value for Umax was found to be 1.73 days−1. At nitrate substrate concentrations >6 kg NO3/m3 a nonlinear relationship was observed in the Lineweaver-Burk plots indicating nitrate substrate inhibition. Specific removal rates at nitrate concentrations >6 kg NO3/m3 averaged <1.0 days−1. Ammonia toxicity may also have occurred as the pH of the mixed liquor was near 8. Methanol concentrations as high as 11.6 kg CH3OH/m3 did not inhibit denitrification rates. The highest specific removal rates recorded (3.13 ± 0.56 days−1) were with influents made from UO2 fuel fabrication waste water.  相似文献   

8.
Reactive building materials offer an opportunity to provide indoor air cleaning with minimal energy use. Laboratory and test house experiments provide evidence that indoor ozone concentrations can be diminished by activated carbon (AC) and unpainted gypsum wallboard (GWB) panels. These two materials are highly reactive with ozone and produce few byproducts. When measured in a 14.2 m3 stainless-steel chamber, the mean deposition velocities to the materials were 5.3 m h-1 for AC and 2.4 m h−1 for GWB for a variety of airflow and relative humidity conditions. The ozone decay rates for both the materials were also measured in an unoccupied 34.5 m3 bedroom under various mixing conditions. In this case, ozone removal increased relative to background by 27–100% with a 4.4 m2 panel of a reactive material placed on one wall of the bedroom. The ozone decay rate for the bedroom increased over background by approximately 2–3 h−1 for GWB and 2–7 h−1 for AC. Application of a mass balance model for a typical home demonstrates that effectiveness for ozone removal depends weakly on the air exchange rate and strongly on the panel material, panel area, and mixing conditions. An ozone removal effectiveness of over 80% is possible with sufficient panel area and positioning that provides elevated air speeds near the panels.  相似文献   

9.
Silage effluent is generally regarded as one of the major agricultural pollutants of water courses. Efficient anaerobic digestion of silage effluent was achieved by a 3-day hydraulic retention in an upflow anaerobic filter. The filter was a laboratory scale unit containing a limestone chip support matrix. At loading rates ranging from 7.8 to 14.2 kg COD m−3 active volume day−1, the average COD removal obtained ranged from 86 to 89% with a TOA removal of 82–88%. The methane content of the biogas produced ranged from 81 to 88%. The rate of COD conversion to CH4 was independent of the loading rate under the conditions tested and the observed efficiency averaged 0.357 m1 CH4(STP) kg−1 COD introduced to the reactor.The reactor tolerated considerable variation in influent pH without any apparent decrease in digestion efficiency. It is apparent from the results obtained that a reactor which is in routine use for slurry digestion may also be utilised for silage effluent digestion on a seasonal basis.  相似文献   

10.
Ultrafiltration (UF) fouling has been attributed to concentration polarization, gel layer formation as well as outer and inner membrane pore clogging. It is believed that mass of humic materials either retained on membrane surface or associated with membrane inner pore surface is the primary cause for permeate flux decline and filtration resistance build-up in water supply industries. While biofilm/biofouling and inorganic matter could also be contributing factors for permeability decline in wastewater treatment practices. The present study relates UF fouling to mass of dissolved organic matter (DOM) retained on membrane and quantifies the effect of retained DOM mass on filtration flux decline. The results demonstrate that larger pore membranes exhibit significant flux decline in comparison with the smaller ones. During a 24-h period, dissolved organic carbon mass retained in 10 kDa membranes was about 1.0 g m−2 and that in 100 kDa membranes was more than 3 times higher (3.6 g m−2). The accumulation of retained DOM mass significantly affects permeate flux. It is highly likely that some DOMs bind or aggregate together to form surface gel layer in the smaller 10 kDa UF system; those DOMs largely present in inner pore and serving as pore blockage on a loose membrane (100 kDa) are responsible for severe flux decline.  相似文献   

11.
Sim LN  Ye Y  Chen V  Fane AG 《Water research》2011,45(4):1639-1650
Understanding the foulant deposition mechanism during crossflow filtration is critical in developing indices to predict fouling propensity of feed water for reverse osmosis (RO). Factors affecting the performance on different fouling indices such as MFI-UF constant pressure, MFI-UF constant flux and newly proposed fouling index, CFS-MFIUF were investigated. Crossflow Sampler-Modified Fouling Index Ultrafiltration (CFS-MFIUF) utilises a typical crossflow unit to simulate the hydrodynamic conditions in the actual RO units followed by a dead-end unit to measure the fouling propensity of foulants. CFS-MFIUF was found sensitive to crossflow velocity. The crossflow velocity in the crossflow sampler unit influences the particle concentration and the particle size distribution in its permeate. CFS-MFIUF was also found sensitive to the permeate flux of both CFS and the dead-end cell. To closely simulate the hydrodynamic conditions of a crossflow RO unit, the flux used for CFS-MFIUF measurement was critical. The best option is to operate both the CFS and dead-end permeate flux at flux which is normally operated at industry RO units (∼20 L/m2 h), but this would prolong the test duration excessively. In this study, the dead-end flux was accelerated by reducing the dead-end membrane area while maintaining the CFS permeate flux at 20 L/m2 h. By doing so, a flux correction factor was investigated and applied to correlate the CFS-MFIUF measured at dead-end flux of 120 L/m2 h to CFS-MFIUF measured at dead-end flux of 20 L/m2 h for RO fouling rate prediction. Using this flux correction factor, the test duration of CFS-MFIUF can be shortened from 15 h to 2 h.  相似文献   

12.
Removal of coexisted volatile organic acids was studied using three kinds of activated sludges; treated with sewage, digested night soil and undiluted night soil at the plant scale and laboratrial experiment. Concentration of volatile fatty acids in sewage were too low to be detected, meanwhile 5–28 ppm of acetic acid were detected in influent of aeration tank of digested night soil treatment plant, and 1335–5340 ppm of acetic acid were detected in night soil. Removal rates of acetic acid were 35.9 mg g−1 h−1 by sewage activated sludge, 33.6 mg g−1 h−1 by digested night soil activated sludge and 16.9 mg g−1 h−1 by undiluted night soil activated sludge under coexisting volatile fatty acids. This difference depends on the number of bacteria in the activated sludge. Dissimilation percentage of acetic, propionic, butyric and valeric acids were similar results in these activated sludges.  相似文献   

13.
Hyperfiltration (reverse osmosis) with dynamically formed hydrous Zr(IV) oxide-polyacrylate membranes removed 98 per cent of the organic carbon from effluents from two commercial laundries. The filtrate was clear and essentially colorless to over 85 per cent water recovery. Fluxes were mostly between 50 and 100 (U.S.) gal day −1 ft−2 at temperatures typical of the laundry operations and at 950 psig pressure.  相似文献   

14.
A laboratory scale anaerobic filter packed with synthetic high surface area trickling filter media was used to treat a low strength domestic wastewater averaging 288 mg 1−1 COD. The filter was operated for 60 days after reaching steady-state at 20, 25, 35°C at a loading rate of 0.02 lb COD ft−3 day−1 and 24 h hydraulic retention time. Filter effluent BOD5 averaged 38 mg 1−1 providing an average removal rate of 79%, and effluent COD averaged 78 mg 1−1, corresponding to a 73% removal rate. Removal efficiencies showed very little sensitivity to daily fluctuations in influent wastewater quality. The filter performance at 25 and 35°C was not significantly different, but BOD and TSS removal efficiency declined a: 20°C. Gas production averaged 0.027 ft−3 of gas per ft3 of influent wastewater, or 1.875 ft3 of gas per pound of influent COD. Gas composition averaged 30% nitrogen, 65% methane, and 5% carbon dioxide. Ammonia nitrogen and sulfides both increased during treatment. It is concluded that the anaerobic filter is a promising candidate for treatment of low strength wastewaters and that post treatment for sulfides and ammonia may be necessary.  相似文献   

15.
An enclosed rotating disc unit was operated anaerobically as a denitrifying system, with methanol as the hydrogen donor. As the bacterial population became established, denitrification rate increased by 1·5 mg NO3—N reduced m−2 h−2, to a maximum rate of 260 mg NO3—N reduced m−2h−1. The C:N ratio necessary for complete denitrification was found to be 2·6:1. Optimum pH for denitrification lay in the range between pH 7·0 and 8·5. Q10 values were 1·38 between 10 and 30°C, −2·66 above 30°C and 13·06 below 10°C.  相似文献   

16.
M.T. Downes 《Water research》1978,12(9):673-675
An automated nitrate determination is described in which nitrate is reduced to nitrite with hydrazine sulphate under alkaline conditions in the presence of Cu2+ and Zn2+. Interferances encountered in natural water samples were eliminated by the addition of Zn2+ to the Cu2+ catalyst solution.The method is suitable for the determination of low NO3−N concentrations and compares favourably with the manual copperised cadmium technique for freshwater samples containing 10–800 mg m−3 NO3−N. The method is also linear at nitrate concentrations below 10 mg N m−3. The standard deviations (S.D.) of blanks and of samples containing 2 mg NO3−N m−3 were 0.013 and 0.06 mg N m−3 respectively at an analysis rate of 30 samples h−1.  相似文献   

17.
Algal assays, using the marine diatom Nitzschia closterium, have established that humic acid (5 mg kg−1) can ameliorate the toxicity of the lipophilic complex Cu(oxine)2 (3 × 10−8 mol l−1 in unsupplemented seawater). The toxicity of Cu(PAN)2 is not ameliorated [PAN = 1-(2-pyridylazo)-2-napthol]. In conjunction with previous visible absorption spectrophotometry and polarographic measurements it was established that humic acid sequesters copper(II) from the hydrophobic complexes, releasing a ligand molecule. The copper(II) toxicity may be ameliorated provided the ligand itself is not toxic.Fulvic acid was significantly less effective in ameliorating toxicity. Because of the significant competition from Ca(II) and Mg(II) in seawater, it is inferred that humic substances may be more effective in ameliorating toxicity of hydrophobic copper complexes in fresh water.  相似文献   

18.
Laboratory experiments have been conducted to see what substances are capable of holding iron at a concentration of about 1 ppm in a “dissolved” form (i.e. will pass through a 0.45 μm pore size filter) in oxygenated water. The results show that reagents capable of doing this include humic and tannic acids, surfactants such as sodium dodecyl sulphate and sodium dodecylbenzene sulphonate, and the inorganic ions silicate and phosphate. In contrast, the synthetic polymer polyvinylpyrrollidone and the simple ions Cl, HCO3, SO4 and NO3 showed no ability to stabilise iron. The efficiency of phosphate at keeping iron in the “dissolved” state was found to decrease in the presence of cations, particularly divalent ones, but increased with rise in water pH in the range 6–11.It seems unlikely that much of the stabilization observed for any of the reagents tested is due to their forming complexes with the iron. A much more likely explanation is that the substances for which positive results were obtained are able to stabilize fine colloidal iron particles and inhibit them from forming larger aggregates.  相似文献   

19.
Laboratory activated sludge systems were operated at various COD:P ratios to study the effects of the influent phosphorus concentration on COD removal efficiency, cellular phosphorus, carbohydrate and protein contents, and alkaline phosphatase activity. In varying the COD:P ratio, the COD was held constant at 1000 mg l−1 and phosphorus concentrations of 1, 2, 3, 5, 7, 9, 10, 20, 35 and 50 mg l−1 were used. The optimum COD:P ratio for this study was found to be 100:1. Increasing the phosphorus concentration in the influent above one percent of the influent COD did not provide for an increase in the COD removal nor for significant changes in the cellular protein and carbohydrate content or the alkaline phosphatase activity.  相似文献   

20.
The kinetics of COD removal in nonproliferating glucose-acclimated activated sludge systems was studied. A general differential equation describing this process involves a rate constant for COD removal due to storing processes (zero order), a rate constant for COD removal due to accumulation processes (first order), and an apparent volumetric accumulation capacity. In their dependence on values of these constants, the courses of COD removal can be linear, nonlinear or combined.The rate constant of accumulation capacity (AC) saturation was found to be independent on the initial concentration of biomass and dependent on the type of cultivation or on the composition of a mixed culture. It varied from 1.8 to 2.6 h−1 with activated sludge cultivated semicontinuously (nonfilamentous) and from 0.8 to 1.0 h−1 with activated sludge cultivated continuously in a completely mixed unit (highly filamentous).It was found that activated sludge microorganisms cultivated semicontinuously possessed an apparent specific AC as high as 600–750 mg g−1, whereas those cultivated continuously in a completely mixed unit had their ACs totally saturated. After a 6-h period of aeration (regeneration) without the presence of an exogenous substrate, the latter microorganisms possessed an apparent specific AC of 174 mg g−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号