首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study is an efficient arsenic(V) removal from contaminated waters used as drinking water in adsorption process by zirconium(IV) loaded ligand exchange fibrous adsorbent. The bifunctional fibers contained both phosphonate and sulfonate groups. The bifunctional fiber was synthesised by graft polymerization of chloromethylstyrene onto polyethylene coated polypropylene fiber by means of electron irradiation graft polymerization technique and then desired phosphonate and sulfonate groups were introduced by Arbusov reaction followed by phosphorylation and sulfonation. Arsenic(V) adsorption was clarified in column methods with continuous flow operation in order to assess the arsenic(V) removal capacity in various conditions. The adsorption efficiency was evaluated in several parameters such as competing ions (chloride and sulfate), feed solution acidity, feed flow rate, feed concentration and kinetic performances at high feed flow rate of trace concentration arsenic(V). Arsenic(V) adsorption was not greatly changed when feed solutions pH at 3.0-7.0 and high breakthrough capacity was observed in strong acidic area below pH 2.2. Increasing the flow rate brings a decrease both breakthrough capacity and total adsorption. Trace level of arsenic(V) (0.015 mM) in presence of competing ions was also removed at high flow rate (750 h−1) with high removal efficiency. Therefore, the adsorbent is highly selective to arsenic(V) even in the presence of high concentration competing ions. The adsorbent is reversible and reusable in many cycles without any deterioration in its original performances. Therefore, Zr(IV) loaded ligand exchange adsorbent is to be an effective means to treat arsenic(V) contaminated water efficiently and able to safeguard the human health.  相似文献   

2.
Exposure to arsenic through drinking water poses a threat to human health. Electrocoagulation is a water treatment technology that involves electrolytic oxidation of anode materials and in-situ generation of coagulant. The electrochemical generation of coagulant is an alternative to using chemical coagulants, and the process can also oxidize As(III) to As(V). Batch electrocoagulation experiments were performed in the laboratory using iron electrodes. The experiments quantified the effects of pH, initial arsenic concentration and oxidation state, and concentrations of dissolved phosphate, silica and sulfate on the rate and extent of arsenic removal. The iron generated during electrocoagulation precipitated as lepidocrocite (γ-FeOOH), except when dissolved silica was present, and arsenic was removed by adsorption to the lepidocrocite. Arsenic removal was slower at higher pH. When solutions initially contained As(III), a portion of the As(III) was oxidized to As(V) during electrocoagulation. As(V) removal was faster than As(III) removal. The presence of 1 and 4 mg/L phosphate inhibited arsenic removal, while the presence of 5 and 20 mg/L silica or 10 and 50 mg/L sulfate had no significant effect on arsenic removal. For most conditions examined in this study, over 99.9% arsenic removal efficiency was achieved. Electrocoagulation was also highly effective at removing arsenic from drinking water in field trials conducted in a village in Eastern India. By using operation times long enough to produce sufficient iron oxide for removal of both phosphate and arsenate, the performance of the systems in field trials was not inhibited by high phosphate concentrations.  相似文献   

3.
The individual and combined effects of changes in water quality (i.e. pH, initial concentrations of arsenate (As(V)) and competing ions) and empty bed contact time (EBCT) on As(V) removal performance of a fixed-bed adsorber (FBA) packed with a nanostructured goethite-based granular porous adsorbent were systematically studied under environmentally relevant conditions. Rapid small scale column tests (RSSCTs) were extensively conducted at different EBCTs with synthetic waters in which pH and the concentrations of competing ions (phosphate, silicate, and vanadate) were controlled. In the absence of the competing ions, the effects of initial As(V) concentration, pH, and EBCT on As(V) breakthrough curves were successfully predicted by the homogeneous surface diffusion model (HSDM) with adsorption isotherms predicted by the extended triple layer model (ETLM). The interference effects of silicate and phosphate on As(V) removal were strongly influenced by pH, their concentrations, and EBCT. In the presence of silicate (≤21 mg/L as Si), a longer EBCT surprisingly resulted in worse As(V) removal performance. We suggest this is because silicate, which normally exists at much higher concentration and moves more quickly through the bed than As(V), occupies or blocks adsorption sites on the media and interferes with later As(V) adsorption. Here, an alternative operating scheme of a FBA for As(V) removal is proposed to mitigate the silicate preloading. Silicate showed a strong competing effect to As(V) under the tested conditions. However, as the phosphate concentration increased, its interference effect dominated that of silicate. High phosphate concentration (>100 μg/L as P), as experienced in some regions, resulted in immediate As(V) breakthrough. In contrast to the observation in the presence of silicate, longer EBCT resulted in improved As(V) removal performance in the presence of phosphate. Vanadate was found to compete with As(V) as strongly as phosphate. This study reveals the competitive interactions of As(V) with the competing ions in actual adsorptive treatment systems and the dependence of optimal operation scheme and EBCT on water quality in seeking improved As(V) removal in a FBA.  相似文献   

4.
Zhang G  Qu J  Liu H  Liu R  Wu R 《Water research》2007,41(9):1921-1928
Arsenite (As(III)) is more toxic and more difficult to remove from water than arsenate (As(V)). As there is no simple treatment for the efficient removal of As(III), an oxidation step is always necessary to achieve higher removal. However, this leads to a complicated operation and is not cost-effective. To overcome these disadvantage, a novel Fe-Mn binary oxide material which combined the oxidation property of manganese dioxide and the high adsorption features to As(V) of iron oxides, were developed from low cost materials using a simultaneous oxidation and coprecipitation method. The adsorbent was characterized by BET surface areas measurement, powder XRD, SEM, and XPS. The results showed that prepared Fe-Mn binary oxide with a high surface area (265 m2 g(-1)) was amorphous. Iron and manganese existed mainly in the oxidation state +III and IV, respectively. Laboratory experiments were carried out to investigate adsorption kinetics, adsorption capacity of the adsorbent and the effect of solution pH values on arsenic removal. Batch experimental results showed that the adsorbent could completely oxidize As(III) to As(V) and was effective for both As(V) and As(III) removal, particularly the As(III). The maximal adsorption capacities of As(V) and As(III) were 0.93 mmol g(-1) and 1.77 mmol g(-1), respectively. The results compare favorably with those obtained using other adsorbent. The effects of anions such as SO4(2-), PO4(3-), SiO3(2-), CO3(2-) and humic acid (HA), which possibly exist in natural water, on As(III) removal were also investigated. The results indicated that phosphate was the greatest competitor with arsenic for adsorptive sites on the adsorbent. The presence of sulfate and HA had no significant effect on arsenic removal. The high uptake capability of the Fe-Mn binary oxide makes it potentially attractive adsorbent for the removal of As(III) from aqueous solution.  相似文献   

5.
Magnetite nanoparticles were used to treat arsenic‐contaminated water. Because of their large surface area, these particles have an affinity for heavy metals by adsorbing them from a liquid phase. The results of the study showed that the maximum arsenic adsorption occurred at pH 2, with a value of approximately 3.70 mg/g for both As(III) and As(V) when the initial concentration of both arsenic species was maintained at 2 mg/L. The study showed that, apart from pH, the removal of arsenic from contaminated water also depends on the contact time, the initial concentration of arsenic, the phosphate concentration in the water and the adsorbent concentration. The results suggest that arsenic adsorption involved the formation of weak arsenic–iron oxide complexes at the magnetite surface. At a fixed adsorbent (magnetite nanoparticles) concentration of 0.4 g/L, percent arsenic removal decreased with increasing phosphate concentration. Magnetite nanoparticles removed <50% of arsenic from water containing >6 mg/L phosphate. In this case, an optimum design for achieving high arsenic removal by magnetite nanoparticles may be required.  相似文献   

6.
This research studied As(III) and As(V) removal during electrocoagulation (EC) in comparison with FeCl3 chemical coagulation (CC). The study also attempted to verify chlorine production and the reported oxidation of As(III) during EC. Results showed that As(V) removal during batch EC was erratic at pH 6.5 and the removal was higher-than-expected based on the generation of ferrous iron (Fe2+) during EC. As(V) removal by batch EC was equal to or better than CC at pH 7.5 and 8.5, however soluble Fe2+ was observed in the 0.2-μm membrane filtrate at pH 7.5 (10-45%), and is a cause for concern. Continuous steady-state operation of the EC unit confirmed the deleterious presence of soluble Fe2+ in the treated water. The higher-than-expected As(V) removals during batch mode were presumed due to As(V) adsorption onto the iron rod oxyhydroxides surfaces prior to the attainment of steady-state operation. As(V) removal increased with decreasing pH during both CC and EC, however EC at pH 6.5 was anomalous because of erratic Fe2+ oxidation. The best adsorption capacity was observed with CC at pH 6.5, while lower but similar adsorption capacities were observed at pH 7.5 and 8.5 with CC and EC. A comparison of As(III) adsorption showed better removals during EC compared with CC possibly due to a temporary pH increase during EC. In contrast to literature reports, As(III) oxidation was not observed during EC, and As(III) adsorption onto iron hydroxides during EC was only 5-30% that of As(V) adsorption. Also in contrast to literature, significant Cl2 was not generated during EC, in fact, the rods actually produced a significant chlorine demand due to reduced iron oxides on the rod. Although Cl2 generation and As(III) oxidation are possible using a graphite anode, a combination of graphite and iron rods in the same EC unit did not produce As(III) oxidation. However, a two-stage process (graphite anode followed by iron anode in separate chambers) was effective in As(III) oxidation and removal. The competing ions, silica and phosphate interfered with As(V) adsorption during both CC and EC. However, the degree of interference depends on the concentration and presence of other competing ions. In particular, the presence of silica lowered the effect of phosphate with increasing pH due to silica’s own significant effect at high pHs.  相似文献   

7.
Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide   总被引:2,自引:0,他引:2  
This study evaluated the effectiveness of nanocrystalline titanium dioxide (TiO(2)) in removing arsenate [As(V)] and arsenite [As(III)] and in photocatalytic oxidation of As(III). Batch adsorption and oxidation experiments were conducted with TiO(2) suspensions prepared in a 0.04 M NaCl solution and in a challenge water containing the competing anions phosphate, silicate, and carbonate. The removal of As(V) and As(III) reached equilibrium within 4h and the adsorption kinetics were described by a pseudo-second-order equation. The TiO(2) was effective for As(V) removal at pH<8 and showed a maximum removal for As(III) at pH of about 7.5 in the challenge water. The adsorption capacity of the TiO(2) for As(V) and As(III) was much higher than fumed TiO(2) (Degussa P25) and granular ferric oxide. More than 0.5 mmol/g of As(V) and As(III) was adsorbed by the TiO(2) at an equilibrium arsenic concentration of 0.6mM. The presence of the competing anions had a moderate effect on the adsorption capacities of the TiO(2) for As(III) and As(V) in a neutral pH range. In the presence of sunlight and dissolved oxygen, As(III) (26.7 microM or 2mg/L) was completely converted to As(V) in a 0.2g/L TiO(2) suspension through photocatalytic oxidation within 25 min. The nanocrystalline TiO(2) is an effective adsorbent for As(V) and As(III) and an efficient photocatalyst.  相似文献   

8.
Xiaohong Guan  Haoran Dong  Jun Ma  Li Jiang   《Water research》2009,43(15):3891-3899
Effects of sulfate, phosphate, silicate and humic acid (HA) on the removal of As(III) in the KMnO4–Fe(II) process were investigated in the pH range of 4–9 with permanganate and ferrous sulfate applied at selected dosage. Sulfate decreased the removal of arsenic by 6.5–36.0% at pH 6–9 and the decrease in adsorption did not increase with increasing concentration of sulfate from 50 to 100 mg/L. In the presence of 1 mg/L phosphate, arsenic removal decreased gradually as pH increased from 4 to 6, and a sharp drop occurred at pH 7–9. The presence of 10 mg/L silicate had negligible effect on arsenic removal at pH 4–5 whereas decreased the arsenic removal at pH 6–9 and the decrease was more significant at higher pH. The presence of HA dramatically decreased the arsenic removal over the pH range of 6–9 and HA of higher concentration resulted in greater drop in arsenic removal. The effects of the competing anions on arsenic removal in the KMnO4–Fe(II) process were highly dependent on pH and the degree of these four anions influencing As(III) removal decreased in the following order, phosphate > humic acid > silicate > sulfate. Sulfate differed from the other three anions because sulfate decreased the removal of arsenic mainly by competitive adsorption while phosphate, silicate and HA decreased the removal of As(III) by competitive adsorption and sequestering the formation of ferric hydroxide derived from Fe(II).  相似文献   

9.
Field column studies and laboratory batch experiments were conducted in order to assess the performance of zero-valent iron in removing arsenic from geothermal waters in agricultural regions where phosphates and nitrates were present. A field pilot study demonstrated that iron filings could remove arsenic, phosphate and nitrate from water. In addition, batch studies were performed to evaluate the effect of temperature, phosphate and nitrate on As(III) and As(V) removal rates. All batch experiments were conducted at three temperatures (20, 30 and 40 degrees C). Pseudo-first-order reaction rate constants were calculated for As(III), As(V), phosphate, nitrate and ammonia for all temperatures. As(V) exhibited greater removal rates than As(III). The presence of phosphate and nitrate decreased the rates of arsenic removal. The temperature of the water played a dominant role on the kinetics of arsenic, phosphate and nitrate removal. Nitrate reduction resulted in the formation of nitrite and ammonia. In addition, the activation energy, Eact, and the constant temperature coefficient, theta were determined for each removal process.  相似文献   

10.
Removal of As(V) by adsorption from water solutions was studied using three different synthetic adsorbents. The adsorbents, (a) aluminium nanoparticles (Alu-NPs, <50 nm) incorporated in amine rich cryogels (Alu-cryo), (b) molecular imprinted polymers (<38 μm) in polyacrylamide cryogels (MIP-cryo) and (c) thiol functionalised cryogels (SH-cryo) were evaluated regarding material characteristics and arsenic removal in batch test and continuous mode. Results revealed that a composite design with particles incorporated in cryogels was a successful means for applying small particles (nano- and micro- scale) in water solutions with maintained adsorption capacity and kinetics. Low capacity was obtained from SH-cryo and this adsorbent was hence excluded from the study. The adsorption capacities for the composites were 20.3 ± 0.8 mg/g adsorbent (Alu-cryo) and 7.9 ± 0.7 mg/g adsorbent (MIP-cryo) respectively. From SEM images it was seen that particles were homogeneously distributed in Alu-cryo and heterogeneously distributed in MIP-cryo. The particle incorporation increased the mechanical stability and the polymer backbones of pure polyacrylamide (MIP-cryo) were of better stability than the amine containing polymer backbone (Alu-cryo). Both composites worked well in the studied pH range of pH 2-8. Adsorption tested in real wastewater spiked with arsenic showed that co-ions (nitrate, sulphate and phosphate) affected arsenic removal for Alu-cryo more than for MIP-cryo. Both composites still adsorbed well in the presence of counter-ions (copper and zinc) present at low concentrations (μg/l). The unchanged and selective adsorption in realistic water observed for MIP-cryo was concluded to be due to a successful imprinting, here controlled using a non-imprinted polymer (NIP). A development of MIP-cryo is needed, considering its low adsorption capacity.  相似文献   

11.
Arsenic removal using a polymeric/inorganic hybrid sorbent   总被引:20,自引:0,他引:20  
A fixed-bed sorption process can be very effective in removing trace concentrations of arsenic from contaminated groundwater provided: the sorbent is very selective toward both As(III) and As(V) species; the influent and treated water do not warrant any additional pre- or post- treatment; pH and composition of the raw water with respect to other electrolytes remain unchanged besides arsenic removal, and the sorbent is durable with excellent attrition resistance properties. In addition, the sorbent should be amenable to efficient regeneration for multiple reuse. This study reports the results of an extensive investigation pertaining to arsenic removal properties of a polymeric/inorganic hybrid sorbent. Each hybrid sorbent particle is essentially a spherical macroporous cation exchanger bead within which agglomerates of nanoscale hydrated Fe oxide (HFO) particles have been uniformly and irreversibly dispersed using a simple chemical-thermal treatment. The new sorbent, referred to as hybrid ion exchanger or HIX, combines excellent mechanical and hydraulic properties of spherical polymeric beads with selective As(III) and As(V) sorption properties of HFO nanoparticles at circum-neutral pH. Comparison of the results of fixed-bed column runs between the new sorbent and the polymeric anion exchanger confirmed that both As(V) and As(III) were removed very selectively with HIX. Equally important, no pH adjustment, pre- or post-treatment was warranted. Besides the absence of arsenic, the treated water composition was identical to that of influent water. HIX was amenable to efficient in situ regeneration with caustic soda and could subsequently be brought into service following a short rinse with carbon dioxide sparged water. During fixed-bed column runs, intraparticle diffusion was identified as the primary rate-limiting step for both As(III) and As(V) sorption. Repeated use of the same HIX particles during various laboratory investigations provided strong evidence that the new sorbent possesses excellent attrition resistance properties and retains its arsenic removal capacity over cycles.  相似文献   

12.
Effect of silica and pH on arsenic uptake by resin/iron oxide hybrid media   总被引:1,自引:1,他引:0  
Möller T  Sylvester P 《Water research》2008,42(6-7):1760-1766
The recently imposed maximum contaminant level (MCL) of 10microg/L for arsenic has necessitated many water providers to implement efficient treatment systems to reduce the arsenic content in potable water supplies across the United States. A popular, cost-effective solution is to adsorb the arsenic onto hydrous iron oxide-based granular media. Hybrid media, consisting of hydrous iron oxides impregnated into a polymeric substrate in order to improve mechanical stability, have also been developed. The effective operational bed life of these adsorptive media is strongly dependent on the chemistry of the water being treated. High levels of silica combined with pH values greater than 8 have been shown to have a detrimental effect on the arsenic removal efficiency of all adsorptive media. Batch arsenate (arsenic(V)) adsorption experiments were performed to evaluate the effect of pH and silica on the static arsenic capacity of two iron oxide-based hybrid media, ArsenX(np) (a commercially available media) and npRio (a developmental media). From the data obtained, it was evident that the presence of increased levels of silica enhanced the detrimental effect of elevated pH on arsenic capacity, being most noticeable at pH 8 and above. In a solution containing 30ppm of SiO(2), a decrease in arsenic capacity as high as 71.8% was observed when the pH was increased from 7 to 9. Reducing the pH of the water prior to treatment may therefore be an economic option for improving media performance in drinking waters containing high concentrations of silica.  相似文献   

13.
A biosorbent was prepared by coating ceramic alumina with the natural biopolymer, chitosan, using a dip-coating process. Removal of arsenic (III) (As(III)) and arsenic (V) (As(V)) was studied through adsorption on the biosorbent at pH 4.0 under equilibrium and dynamic conditions. The equilibrium adsorption data were fitted to Langmuir, Freundlich, and Redlich-Peterson adsorption models, and the model parameters were evaluated. All three models represented the experimental data well. The monolayer adsorption capacity of the sorbent, as obtained from the Langmuir isotherm, is 56.50 and 96.46 mg/g of chitosan for As(III) and As(V), respectively. The difference in adsorption capacity for As(III) and As(V) was explained on the basis of speciation of arsenic at pH 4.0. Column adsorption results indicated that no arsenic was found in the effluent solution up to about 40 and 120 bed volumes of As(III) and As(V), respectively. Sodium hydroxide solution (0.1M) was found to be capable of regenerating the column bed.  相似文献   

14.
Liu G  Zhang X  Talley JW  Neal CR  Wang H 《Water research》2008,42(8-9):2309-2319
The effect of natural organic matter (NOM) on arsenic adsorption by a commercial available TiO(2) (Degussa P25) in various simulated As(III)-contaminated raw waters was examined. Five types of NOM that represent different environmental origins were tested. Batch adsorption experiments were conducted under anaerobic conditions and in the absence of light. Either with or without the presence of NOM, the arsenic adsorption reached steady-state within 1h. The presence of 8 mg/L NOM as C in the simulated raw water, however, significantly reduced the amount of arsenic adsorbed at the steady-state. Without NOM, the arsenic adsorption increased with increasing solution pH within the pH range of 4.0-9.4. With four of the NOMs tested, the arsenic adsorption firstly increased with increasing pH and then decreased after the adsorption reached the maximum at pH 7.4-8.7. An appreciable amount of arsenate (As(V)) was detected in the filtrate after the TiO(2) adsorption in the simulated raw waters that contained NOM. The absolute amount of As(V) in the filtrate after TiO(2) adsorption was pH dependent: more As(V) was presented at pH>7 than that at pH<7. The arsenic adsorption in the simulated raw waters with and without NOM were modelled by both Langmuir and Frendlich adsorption equations, with Frendlich adsorption equation giving a better fit for the water without NOM and Langmuir adsorption equation giving a better fit for the waters with NOM. The modelling implies that NOM can occupy some available binding sites for arsenic adsorption on TiO(2) surface. This study suggests that in an As(III)-contaminated raw water, NOM can hinder the uptake of arsenic by TiO(2), but can facilitate the As(III) oxidation to As(V) at TiO(2) surface under alkaline conditions and in the absence of O(2) and light. TiO(2) thus can be used in situ to convert As(III) to the less toxic As(V) in NOM-rich groundwaters.  相似文献   

15.
Xuejun Guo 《Water research》2009,43(17):4327-326
Antimony occurs widely in the environment as a result of natural processes and human activity. Although antimony is similar to arsenic in chemical properties and toxicity, and a pollutant of priority interest to the USEPA and the EU, its environmental behaviors, control techniques, and even solution chemistry, are yet barely touched. In this study, antimony removal from drinking water with coagulation-flocculation-sedimentation (CFS) is comprehensively investigated with respect to the dependence of both Sb(III) and Sb(V) removal on the initial contaminant-loading level, coagulant type and dosage, pH and interfering ions. The optimum pH for Sb(V) removal with ferric chloride (FC) was observed at pH 4.5-5.5, and continuously reduced with further pH increase. Over a broad pH range from 4.0 to 10.0, effective Sb(III) removal with FC was obtained. Contrary to the effective Sb removal with FC, the degree of both Sb(III) and Sb(V) removal with aluminum sulfate (AS) was very low, indicating the impracticability of AS application for antimony removal. The presence of phosphate and humic acid (HA) markedly impeded Sb(V) removal, while exhibited insignificant effect on Sb(III) removal. The effects of coagulant type, Sb species and pH are more pronounced than the effects of coagulant dose and initial pollutant concentration. After preliminarily excluding the possibility of precipitation and the predominance of coprecipitation, the adsorption mechanism is used to rationalize and simulate Sb/FC coagulation with good result by incorporating diffuse-layer model (DLM).  相似文献   

16.
The optimization of TiO2-impregnated chitosan beads (TICB) as an arsenic adsorbent is investigated to maximize the capacity and kinetics of arsenic removal. It has been previously reported that TICB can 1) remove arsenite, 2) remove arsenate, and 3) oxidize arsenite to arsenate in the presence of UV light and oxygen. Herein, it is reported that adsorption capacity for TICB is controlled by solution pH and TiO2 loading within the bead and enhanced with exposure to UV light. Solution pH is found to be a critical parameter, whereby arsenate is effectively removed below pH 7.25 and arsenite is effectively removed below pH 9.2. A model to predict TICB capacity, based on TiO2 loading and solution pH, is presented for arsenite, arsenate, and total arsenic in the presence of UV light. The rate of removal is increased with reductions in bead size and with exposure to UV light. Phosphate is found to be a direct competitor with arsenate for adsorption sites on TICB, but other relevant common background groundwater ions do not compete with arsenate for adsorption sites. TICB can be regenerated with weak NaOH and maintain full adsorption capacity for at least three adsorption/desorption cycles.  相似文献   

17.
Dambies L  Vincent T  Guibal E 《Water research》2002,36(15):3699-3710
Modified chitosan gel beads, which had been prepared by the molybdate adsorption and coagulation (in the presence of molybdate) methods, were tested for As(III) and As(V) removal from dilute solutions (in the range 5-20 mg As L-1). The sorbent is very efficient at removing As(V) from acid solutions (optimum pH close to pH 2-3), whereas the sorption capacities are significantly lower for As(III) uptake (230 mg As(V) g-1 Mo, 70 mg As(III) g-1 Mo, respectively). Since the sorption proceeds in acidic solutions with a partial release of molybdate and with residual concentrations (ca. 500 micrograms As L-1) above the regulations for drinking water, the process appears to be directed to the treatment of industrial effluents or as a pre-concentration process. The mechanism of As(V) sorption is related to the ability of molybdate ions to complex As(V) ions in acid solutions. The uptake mechanism was confirmed by XPS analysis and desorption studies. In the case of As(III) sorption the mechanism of uptake is not identified since no complex has been cited in the literature regarding As(III) binding to Mo (VI), which was also identified by XPS analysis as the sorption site. As(V) sorption is not influenced by the presence of co-ions, with the exception of phosphate anions at low concentration, and silicate at high relative concentration. Arsenic desorption can be performed using phosphoric acid solutions.  相似文献   

18.
A study on the removal of arsenic from real life groundwater using iron–chitosan composites is presented. Removal of arsenic(III) and arsenic(V) was studied through adsorption at pH 7.0 under equilibrium and dynamic conditions. The equilibrium data were fitted to Langmuir adsorption models and the various model parameters were evaluated. The monolayer adsorption capacity from the Langmuir model for iron chitosan flakes (ICF) (22.47 ± 0.56 mg/g for As(V) and 16.15 ± 0.32 mg/g for As(III)) was found to be considerably higher than that obtained for iron chitosan granules (ICB) (2.24 ± 0.04 mg/g for As(V); 2.32 ± 0.05 mg/g for As(III)). Anions including sulfate, phosphate and silicate at the levels present in groundwater did not cause serious interference in the adsorption behavior of arsenate/arsenite. The column regeneration studies were carried out for two sorption–desorption cycles for both As(III) and As(V) using ICF and ICB as sorbents. One hundred and forty-seven bed volumes of As(III) and 112 bed volumes of As(V) spiked groundwater were treated in column experiments using ICB, reducing arsenic concentration from 500 to <10 μg/l. The eluent used for the regeneration of the spent sorbent was 0.1 M NaOH. The adsorbent was also successfully applied for the removal of total inorganic arsenic down to <10 μg/l from real life arsenic contaminated groundwater samples.  相似文献   

19.
Relatively limited information is available regarding the impacts of temperature on the adsorption kinetics and equilibrium capacities of granular ferric hydroxide (GFH) for arsenic (V) and arsenic (III) in an aqueous solution. In general, very little information is available on the kinetics and thermodynamic aspects of adsorption of arsenic compounds onto other iron oxide-based adsorbents as well. In order to gain an understanding of the adsorption process kinetics, a detailed study was conducted in a controlled batch system. The effects of temperature and pH on the adsorption rates of arsenic (V) and arsenic (III) were investigated. Reaction rate constants were calculated at pH levels of 6.5 and 7.5. Rate data are best described by a pseudo first-order kinetic model at each temperature and pH condition studied. At lower pH values, arsenic (V) exhibits greater removal rates than arsenic (III). An increase in temperature increases the overall adsorption reaction rate constant values for both arsenic (V) and arsenic (III). An examination of thermodynamic parameters shows that the adsorption of arsenic (V) as well as arsenic (III) by GFH is an endothermic process and is spontaneous at the specific temperatures investigated.  相似文献   

20.
Arsenic attenuation by oxidized aquifer sediments in Bangladesh   总被引:3,自引:0,他引:3  
Recognition of arsenic (As) contamination of shallow fluvio-deltaic aquifers in the Bengal Basin has resulted in increasing exploitation of groundwater from deeper aquifers that generally contain low concentrations of dissolved As. Pumping-induced infiltration of high-As groundwater could eventually cause As concentrations in these aquifers to increase. This study investigates the adsorption capacity for As of sediment from a low-As aquifer near Dhaka, Bangladesh. A shallow, chemically-reducing aquifer at this site extends to a depth of 50 m and has maximum As concentrations in groundwater of 900 microg/L. At depths greater than 50 m, geochemical conditions are more oxidizing and groundwater has <5 microg/L As. There is no thick layer of clay at this site to inhibit vertical transport of groundwater. Arsenite [As(III)] is the dominant oxidation state in contaminated groundwater; however, data from laboratory batch experiments show that As(III) is oxidized to arsenate [As(V)] by manganese (Mn) minerals that are present in the oxidized sediment. Thus, the long-term viability of the deeper aquifers as a source of water supply is likely to depend on As(V) adsorption. The adsorption capacity of these sediments is a function of the oxidation state of As and the concentration of other solutes that compete for adsorption sites. Arsenite that was not oxidized did adsorb, but to a much lesser extent than As(V). Phosphate (P) caused a substantial decrease in As(V) adsorption. Increasing pH and concentrations of silica (Si) had lesser effects on As(V) adsorption. The effect of bicarbonate (HCO(3)) on As(V) adsorption was negligible. Equilibrium constants for adsorption of As(V), As(III), P, Si, HCO(3), and H were determined from the experimental data and a quantitative model developed. Oxidation of As(III) was modeled with a first-order rate constant. This model was used to successfully simulate As(V) adsorption in the presence of multiple competing solutes. Results from these experiments show that oxidized sediments have a substantial but limited capacity for removal of As from groundwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号