首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Asset deterioration and discolouration in water distribution systems   总被引:4,自引:0,他引:4  
Water Distribution Systems function to supply treated water safe for human consumption and complying with increasingly stringent quality regulations. Considered primarily an aesthetic issue, discolouration is the largest cause of customer dissatisfaction associated with distribution system water quality. Pro-active measures to prevent discolouration are sought yet network processes remain insufficiently understood to fully justify and optimise capital or operational strategies to manage discolouration risk.Results are presented from a comprehensive fieldwork programme in UK water distribution networks that have determined asset deterioration with respect to discolouration. This is achieved by quantification of material accumulating as cohesive layers on pipe surfaces that when mobilised are acknowledged as the primary cause of discolouration. It is shown that these material layers develop ubiquitously with defined layer strength characteristics and at a consistent and repeatable rate dependant on water quality. For UK networks iron concentration in the bulk water is shown as a potential indicator of deterioration rate. With material layer development rates determined, management decisions that balance discolouration risk and expenditure to maintain water quality integrity can be justified. In particular the balance between capital investment such as improving water treatment output or pipe renewal and operational expenditure such as the frequency of network maintenance through flushing may be judged. While the rate of development is shown to be a function of water quality, the magnitude (peak or average turbidity) of discolouration incidents is shown to be dominated by hydraulic conditions. From this it can be proposed that network hydraulic management, such as regular periodic ‘stressing’, is a potential strategy in reducing discolouration risk. The ultimate application of this is the hydraulic design of self-cleaning networks to maintain discolouration risk below acceptable levels.  相似文献   

2.
Despite significant on-going investment, water companies continue to receive an unacceptable number of discolouration related customer contacts. In this paper, data from intensive distribution system turbidity monitoring and cluster analysis of discolouration customer contacts indicate that a significant proportion of these contacts are due to material mobilising from the trunk main system, and operational flow increases are shown to have a higher discolouration risk than burst incidents. A trunk main discolouration incident highlighting this risk is discussed, demonstrating the need for pro-active trunk main risk assessments. To identify the source of the material event flow rates were modelled using the PODDS (prediction of discolouration in distribution systems) discolouration model. Best practice pro-active management is demonstrated in a case study where the PODDS model is used to implement managed incremental flow changes on a main with known discolouration risk with no discolouration impact to customers and significant cost savings.  相似文献   

3.
Discolouration in potable water distribution systems: a review   总被引:2,自引:0,他引:2  
A large proportion of the customer contacts that drinking water supply companies receive stem from the occurrence of discoloured water. Currently, such complaints are dealt with in a reactive manner. However, water companies are being driven to implement planned activities to control discolouration prior to contacts occurring. Hence improved understanding of the dominant processes and predictive and management tools are needed. The material responsible for discolouration has a variety of origins and a range of processes and mechanisms may be associated with its accumulation within distribution systems. Irrespective of material origins, accumulation processes and mechanisms, discolouration events occur as a result of systems changes leading to mobilisation of the accumulations from within the network. Despite this conceptual understanding, there are very few published practicable tools and techniques available to aid water companies in the planned management and control of discolouration problems. Two recently developed and published, but different approaches to address this are reviewed here: the PODDS model which was developed to predict levels of turbidity as a result of change in hydraulic conditions, but which is semi-empirical and requires calibration; and the resuspension potential method which was developed to directly measure discolouration resulting from a controlled change in hydraulic conditions, providing a direct assessment of discolouration risk, although intrinsically requiring the limited generation of discoloured water within a live network. Both these methods support decision making on the need for maintenance operations. While risk evaluation and implementation of appropriate maintenance can be implemented to control discolouration risk, new material will continue to accumulate and hence an ongoing programme of maintenance is required. One sustainable measure to prevent such re-accumulation of material is the adoption of a self-cleaning threshold, an hydraulic force which a pipe experiences on a regular basis that effectively prevents the accumulation of material. This concept has been effectively employed for the design of new networks in the Netherlands. Alternatively, measures could be implemented to limit or prevent particles from entering or being generated within the network, such as by improving treatment or preventing the formation of corrosion by-products through lining or replacing ferrous pipes. The cost benefit of such capex investment or ongoing opex is uncertain as the quantification and relative significance of factors possibly leading to material accumulation are poorly understood. Hence, this is an area in need of significant further practical research and development.  相似文献   

4.
This paper investigates the particle flow movement and deposition in a 90° bend after a straight duct, utilizing the Lagrangian particle-tracking model incorporated with a particle–wall collision model. Particle turbulent dispersion is introduced by employing the ‘eddy lifetime’ model, and particle deposition velocity in the bend is proposed by counting the number of deposited trajectories in a time period. The developed models are validated for both airflow and particle flow by previous experimental data. Particle distribution and deposition behavior at five size groups (1, 3, 5, 9, and 16 μm) are investigated. The simulation results show that, compared with traditional ‘Trap’ model, the particle–wall collision model postpones the emergence and slows the increase of the ‘particle free zone’ as the particle diameter increases. Particle deposition velocity in the duct bend is also generally predicted by the proposed estimation equation under the simulated conditions. This reveals that adopting the particle–wall collision model obtains a reasonable prediction of particle distribution and deposition in the duct bend. This work will benefit the understanding and application of microparticle flow in curved duct systems.  相似文献   

5.
The prevalence of water quality incidents and disease outbreaks suggests an imperative to analyse and understand the roles of operators and organisations in the water supply system. One means considered in this paper is through human reliability analysis (HRA). We classify the human errors contributing to 62 drinking water accidents occurring in affluent countries from 1974 to 2001; define the lifecycle of these incidents; and adapt Reason's ‘Swiss cheese’ model for drinking water safety. We discuss the role of HRA in human error reduction and drinking water safety and propose a future research agenda for human error reduction in the water sector.  相似文献   

6.
Various particle transport mechanisms play a role in the build-up of discoloration potential in drinking water distribution networks. In order to enhance our understanding of and ability to predict this build-up, it is essential to recognize and understand their role. Gravitational settling with drag has primarily been considered in this context. However, since flow in water distribution pipes is nearly always in the turbulent regime, turbulent processes should be considered also. In addition to these, single particle effects and forces may affect radial particle transport.In this work, we present an application of a previously published turbulent particle deposition theory to conditions relevant for drinking water distribution systems. We predict quantitatively under which conditions turbophoresis, including the virtual mass effect, the Saffman lift force, and the Magnus force may contribute significantly to sediment transport in radial direction and compare these results to experimental observations. The contribution of turbophoresis is mostly limited to large particles (>50 μm) in transport mains, and not expected to play a major role in distribution mains. The Saffman lift force may enhance this process to some degree. The Magnus force is not expected to play any significant role in drinking water distribution systems.  相似文献   

7.
Real-time PCR absolute quantification applications are becoming more common in the recreational and drinking water quality industries. Many methods rely on the use of standard curves to make estimates of DNA target concentrations in unknown samples. Traditional absolute quantification approaches dictate that a standard curve must accompany each experimental run. However, the generation of a standard curve for each qPCR experiment set-up can be expensive and time consuming, especially for studies with large numbers of unknown samples. As a result, many researchers have adopted a master calibration strategy where a single curve is derived from DNA standard measurements generated from multiple instrument runs. However, a master curve can inflate uncertainty associated with intercept and slope parameters and decrease the accuracy of unknown sample DNA target concentration estimates. Here we report two alternative strategies termed ‘pooled’ and ‘mixed’ for the generation of calibration equations from absolute standard curves which can help reduce the cost and time of laboratory testing, as well as the uncertainty in calibration model parameter estimates. In this study, four different strategies for generating calibration models were compared based on a series of repeated experiments for two different qPCR assays using a Monte Carlo Markov Chain method. The hierarchical Bayesian approach allowed for the comparison of uncertainty in intercept and slope model parameters and the optimization of experiment design. Data suggests that the ‘pooled’ model can reduce uncertainty in both slope and intercept parameter estimates compared to the traditional single curve approach. In addition, the ‘mixed’ model achieved uncertainty estimates similar to the ‘single’ model while increasing the number of available reaction wells per instrument run.  相似文献   

8.
Due to prolonged droughts in recent years, the use of rainwater tanks in urban areas has increased in Australia. In order to apportion sources of contribution to heavy metal and ionic contaminants in rainwater tanks in Brisbane, a subtropical urban area in Australia, monthly tank water samples (24 sites, 31 tanks) and concurrent bulk deposition samples (18 sites) were collected during mainly April 2007-March 2008. The samples were analysed for acid-soluble metals, soluble anions, total inorganic carbon and total organic carbon, and characteristics such as total solid and pH. The Positive Matrix Factorisation model, EPA PMF 3.0, was used to apportion sources of contribution to the contaminants. Four source factors were identified for the bulk deposition samples, including ‘crustal matter/sea salt’, ‘car exhausts/road side dust’, ‘industrial dust’ and ‘aged sea salt/secondary aerosols’. For the tank water samples, apart from these atmospheric deposition related factors which contributed in total to 65% of the total contaminant concentration on average, another six rainwater collection system related factors were identified, including ‘plumbing’, ‘building material’, ‘galvanizing’, ‘roofing’, ‘steel’ and ‘lead flashing/paint’ (contributing in total to 35% of the total concentration on average). The Australian Drinking Water Guideline for lead was exceeded in 15% of the tank water samples. The collection system related factors, in particular the ‘lead flashing/paint’ factor, contributed to 79% of the lead in the tank water samples on average. The concentration of lead in tank water was found to vary with various environmental and collection system factors, in particular the presence of lead flashing on the roof. The results also indicated the important role of sludge dynamics inside the tank on the quality of tank water.  相似文献   

9.
Vulnerability of bank filtration systems to climate change   总被引:1,自引:0,他引:1  
Bank filtration (BF) is a well established and proven natural water treatment technology, where surface water is infiltrated to an aquifer through river or lake banks. Improvement of water quality is achieved by a series of chemical, biological and physical processes during subsurface passage. This paper aims at identifying climate sensitive factors affecting bank filtration performance and assesses their relevance based on hypothetical ‘drought’ and ‘flood’ climate scenarios. The climate sensitive factors influencing water quantity and quality also have influence on substance removal parameters such as redox conditions and travel time. Droughts are found to promote anaerobic conditions during bank filtration passage, while flood events can drastically shorten travel time and cause breakthrough of pathogens, metals, suspended solids, DOC and organic micropollutants. The study revealed that only BF systems comprising an oxic to anoxic redox sequence ensure maximum removal efficiency. The storage capacity of the banks and availability of two source waters renders BF for drinking water supply less vulnerable than surface water or groundwater abstraction alone. Overall, BF is vulnerable to climate change although anthropogenic impacts are at least as important.  相似文献   

10.
Evidence for the movement of agricultural slurry and associated pollutants into surface waters is often anecdotal, particularly with relation to its ‘particulate’ components which receive less attention than ‘bio-available’ soluble phases. To assess the extent of movement of slurry particles artificial fluorescent particles were mixed with slurry and applied to a field sub-catchment within a headwater catchment. Particles were 2-60 μm in diameter and two different densities, 2.7 and 1.2 g cm-3 representing ‘inorganic’ and ‘organic’ material. Water samples from the field and catchment outlet were collected during two storm events following slurry application and analysed for particle and suspended sediment concentrations (SSC). SSC from the field and catchment outlet always formed clockwise hysteresis loops indicating sediment exhaustion and particles of the two densities were always found to be positively correlated. Particles from the field formed clockwise hysteresis loops during the first discharge event after slurry application, but anti-clockwise hysteresis loops during the second monitored event which indicated a depletion of readily mobilisable particles. Particles from the catchment outlet always formed anticlockwise hysteresis loops. Particle size became finer spatially, between field and catchment outlet, and temporally, between successive storm events. The results indicate that slurry particles may be readily transported within catchments but that different areas may contribute to pollutant loads long after the main peak in SSC has passed. The density of the particles did not appear to have any effect on particle transport however the size of the particles may play a more important role in the 2-60 μm range.  相似文献   

11.
In April 2001, draft ‘Guidelines’ for safe recreational water environments were developed at a World Health Organization (WHO) expert consultation. Later the same month, these were presented and discussed at the ‘Green Week’ in Brussels alongside the on-going revision of the European Union Bathing Water Directive 76/160/EEC. The WHO Guidelines cover general aspects of recreational water management as well as define water quality criteria for various hazards. For faecal pollution, these include faecal indicator organism concentrations and an assessment of vulnerability to faecal contamination. Central to the approach set out in the WHO Guidelines are: (i) the concept of beach profiling to produce a ‘sanitary inspection category’ which implies a priori hazard assessment as a core management tool and (ii) the prediction of poor water quality to assist in real time risk assessment and public health protection. These management approaches reflect a harmonized approach towards the assessment and management of risk for water-related infectious disease being applied by WHO. Numerical microbiological criteria for intestinal enterococci are proposed in the new Guidelines. These were developed using a novel approach to disease burden assessment, which has been applied to both recreational waters and urban air quality. This paper explains the scientific rationale and mathematical basis of the new approach, which is not presented in the WHO Guidelines for recreational waters.  相似文献   

12.
The major research questions addressed in this study were (i) whether green microalgae living in soft water (operationally defined water hardness <10 mg CaCO3/L) are intrinsically more sensitive to Ni than green microalgae living in hard water (operationally defined water hardness >25 mg CaCO3/L), and (ii) whether a single bioavailability model can be used to predict the effect of water hardness on the toxicity of Ni to green microalgae in both soft and hard water. Algal growth inhibition tests were conducted with clones of 10 different species collected in soft and hard water lakes in Sweden. Soft water algae were tested in a ‘soft’ and a ‘moderately hard’ test medium (nominal water hardness = 6.25 and 16.3 mg CaCO3/L, respectively), whereas hard water algae were tested in a ‘moderately hard’ and a ‘hard’ test medium (nominal water hardness = 16.3 and 43.4 mg CaCO3/L, respectively). The results from the growth inhibition tests in the ‘moderately hard’ test medium revealed no significant sensitivity differences between the soft and the hard water algae used in this study. Increasing water hardness significantly reduced Ni toxicity to both soft and hard water algae. Because it has previously been demonstrated that Ca does not significantly protect the unicellular green alga Pseudokirchneriella subcapitata against Ni toxicity, it was assumed that the protective effect of water hardness can be ascribed to Mg alone. The log KMgBL (= 5.5) was calculated to be identical for the soft and the hard water algae used in this study. A single bioavailability model can therefore be used to predict Ni toxicity to green microalgae in soft and hard surface waters as a function of water hardness.  相似文献   

13.
Nason JA  Lawler DF 《Water research》2009,43(2):303-312
Particle removal is a critical step in the treatment of surface water for potable use, and the majority of drinking water treatment plants employ precipitative coagulation processes such as alum and iron “sweep-floc” coagulation or lime softening for particle pre-treatment. Unfortunately, little is quantitatively known about how particle size distributions are shaped by simultaneous precipitation and flocculation. In an earlier paper, we demonstrated the effects of the saturation ratio, the mixing intensity and the seed concentration on the rates of homogeneous nucleation, precipitative growth and flocculation during precipitation of calcium carbonate at constant solution composition using electronic particle counting techniques. In this work, we extend those findings to systems more closely emulating the conditions in actual softening processes (i.e., declining solution composition). Key findings include the strong dependence of the rate of flocculation on the initial saturation ratio and demonstration of the benefits of seeding precipitative softening from the perspective of optimizing the effluent particle size distribution. The mixing intensity during precipitation was also shown to strongly influence the final particle size distribution. Implications of the findings with respect to softening practice are discussed.  相似文献   

14.
Reliable and accurate determinations of the quantities and composition of wastes is required for the planning of municipal solid waste (MSW) management systems. A model, based on the interrelationships of expenditure on consumer goods, time distribution, daily activities, residents groups, and waste generation, was developed and employed to estimate MSW generation by different activities and resident groups in Beijing. The principle is that MSW is produced by consumption of consumer goods by residents in their daily activities: ‘Maintenance’ (meeting the basic needs of food, housing and personal care), ‘Subsistence’ (providing the financial requirements) and ‘Leisure’ (social and recreational pursuits) activities. Three series of important parameters - waste generation per unit of consumer expenditure, consumer expenditure distribution to activities in unit time, and time assignment to activities by different resident groups - were determined using a statistical analysis, a sampling survey and the Analytic Hierarchy Process, respectively. Data for analysis were obtained from the Beijing Statistical Yearbook (2004-2008) and questionnaire survey. The results reveal that ‘Maintenance’ activity produced the most MSW, distantly followed by ‘Leisure’ and ‘Subsistence’ activities. In 2008, in descending order of MSW generation the different resident groups were floating population, non-civil servants, retired people, civil servants, college students (including both undergraduates and graduates), primary and secondary students, and preschoolers. The new estimation model, which was successful in fitting waste generation by different activities and resident groups over the investigated years, was amenable to MSW prediction.  相似文献   

15.
The management of project risk is considered a key discipline by most organisations involved in projects. Best practice project risk management processes are claimed to be self-evidently correct. However, project risk management involves a choice between which information is utilized and which is deemed to be irrelevant and hence excluded. Little research has been carried out to ascertain the manifestation of barriers to optimal project risk management such as ‘irrelevance’; the deliberate inattention of risk actors to risk. This paper presents the results of a qualitative study of IT project managers, investigating their reasons for deeming certain known risks to be irrelevant. The results both confirm and expand on Smithson’s [Smithson, M., 1989. Ignorance and Uncertainty. Springer-Verlag, New York] taxonomy of ignorance and uncertainty and in particular offer further context related insights into the phenomenon of ‘irrelevance’ in project risk management. We suggest that coping with ‘irrelevance’ requires defence mechanisms, the effective management of relevance as well as the setting of, and sticking to priorities.  相似文献   

16.
The overall aim of this study is to identify factors that influence architects' demotivation in design firms. After a review of extant literatures in design management, project management, and organisational behaviour, a list of 43 demotivating criteria was produced and used in a questionnaire survey. Analyses included reliability analysis, Mann–Whitney U and Kruskal–Wallis tests, demotivation severity index (DSI) computation and exploratory factor analysis. Results show an underlying factor structure of seven demotivating factors that include ‘organisational injustice’, ‘project induced stress’, ‘dysfunctional design team’, ‘poor interpersonal relationships’, ‘perceived career decline’, ‘negative leadership behaviours’ and ‘poor organisational culture’. Comparing these demotivational factors with motivational factors identified from previous related research, this study confirms that demotivation and motivation are on the same pole. In addition, what causes motivation or demotivation is a function of individual frame of reference. This implies that the presence or absence of a factor might cause motivation or demotivation depending on an individual frame of reference. Positive attention to the identified factors in relation to individual personality differences therefore helps to remove impediments that could affect employees' well-being such as being downcast, dispirited, depressed and despondent. The study would help directors and managers of design firms to develop a healthy workforce through recognition and eradication of the identified demotivating factors using some of the suggested solutions.  相似文献   

17.
Albert S. Fu 《Cities》2011,28(4):340-346
Although Spanish-Colonial Revival architecture and place-names dominates Southern California’s landscape, one also finds examples of simulated Middle Eastern bazaars, references to Ancient Egypt, and the use of iconography from non-European Old World. While the region’s landscape is arguably a product of bricolage and postmodern sensibilities, this article looks at the history of ‘Orientalism’ in Southern California’s built environment. In particular, I am looking at the precedents for this seemingly contradictory use of the ‘Oriental’ in the region. The ‘Oriental’ as a sinfully seductive means of creating spectacle in the built environment is both glorified and demonized in popular discourse. For example, the ‘Oriental’ is celebrated in shopping malls, but demonized culturally and politically. However, it is in this contradiction that we can see how history and ideology has shaped the vernacular landscape. As such, this article will look at early twentieth century examples of the ‘Oriental’ in Spanish-Colonial Revival as a foundation to understand contradictions in the built environment, culture, and racial hierarchies.  相似文献   

18.
Diarrhea is the main health problem caused by human-related microsporidia, and waterborne transmission is one of the main risk factors for intestinal diseases. Recent studies suggest the involvement of water in the epidemiology of human microsporidiosis. However, studies related to the presence of microsporidia in different types of waters from countries where human microsporidiosis has been described are still scarce. Thirty-eight water samples from 8 drinking water treatment plants (DWTPs), 8 wastewater treatment plants (WWTPs) and 6 recreational river areas (RRAs) from Galicia (NW Spain) have been analyzed. One hundred liters of water from DWTPs and 50 L of water from WWTPs and RRAs were filtered to recover parasites, using the IDEXX Filta-Max® system.Microsporidian spores were identified by Weber’s stain and positive samples were analyzed by PCR, using specific primers for Enterocytozoon bieneusi, Encephalitozoon intestinalis, Encephalitozoon cuniculi, and Encephalitozoon hellem. Microsporidia spores were identified by staining protocols in eight samples (21.0%): 2 from DWTPs, 5 from WWTPs, and 1 from an RRA. In the RRA sample, the microsporidia were identified as E. intestinalis.To the best of our knowledge, this is the first report of human-pathogenic microsporidia in water samples from DWTPs, WWTPs and RRAs in Spain. These observations add further evidence to support that new and appropriate control and regulations for drinking, wastewater, and recreational waters should be established to avoid health risks from this pathogen.  相似文献   

19.
Classification of contaminated land is important for risk assessment and so it is vital to understand and quantify all of the uncertainties that are involved in the assessment of contaminated land. This paper uses a case study to compare two methods for assessing the uncertainty in site investigations (uncertainty of individual measurements, including that from sampling, and uncertainty of the mean value of all measurements within an area) and how the different methods affect the decisions made about a site. Using the ‘uncertainty of the mean value’ there is shown to be no significant possibility of ‘significant harm’ under UK guidance at one particular test site, but if you consider the ‘uncertainty of the measurements’ a significant proportion (50%) of the site is shown to be possibly contaminated. This raises doubts as to whether the current method using ‘uncertainty of the mean’ is sufficiently robust, and suggests that ‘uncertainty of measurement’ information may be preferable, or at least beneficial when used in conjunction.  相似文献   

20.
The lines of ‘damage-begin’ and ‘specimen-break’ for dynamic loading of a geogrid were determined in a series of laboratory testing. The cyclic load ratio was set to R = 0.5, loading frequency f = 10 Hz and f = 3 Hz. The test results show clearly that the chosen procedure for the determination and analysis of the beginning of damage and break is reproducible and allow for safe extrapolation for lower load levels. Furthermore the method chosen enables explicit decrease of the required testing time. The assumption of linear damage accumulation was examined in two-step-trials. The number of load cycles to ‘break’ evaluated in ‘one-step-tests’ compared with those of ‘two-step-loading’ are practically the same. The existence of ‘damage-lines’ for the examined geogrid under a dynamic pulsating load of 10 Hz and 3 Hz and a R-value of 0.5 could be verified. Damage of the specimens occurs only for load-cycles lying between the ‘damage-line’ and the ‘stress-cycle-diagram’ (‘Woehler-curve’). When it comes to dimensioning against ‘damage-beginning’ or ‘break’, higher loading frequencies present the critical case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号