首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arsenic (As) is a toxic element frequently present in acid mine waters and effluents. Precipitation of trivalent arsenic sulphide in sulphate-reducing conditions at low pH has been studied with the aim of removing this hazardous element in a waste product with high As content. To achieve this, a 400 mL fixed-film column bioreactor was fed continuously with a synthetic solution containing 100 mg L−1 As(V), glycerol and/or hydrogen, at pH values between 2.7 and 5. The highest global As removal rate obtained during these experiments was close to 2.5 mg L−1 h−1. A switch from glycerol to hydrogen when the biofilm was mature induced an abrupt increase in the sulphate-reducing activity, resulting in a dramatic mobilisation of arsenic due to the formation of soluble thioarsenic complexes. A new analytical method, based on ionic chromatography, was used to evaluate the proportion of As present as thioarsenic complexes in the bioreactor. Profiles of pH, total As and sulphate concentrations suggest that As removal efficiency was linked to solubility of orpiment (As2S3) depending on pH conditions. Molecular fingerprints revealed fairly homogeneous bacterial colonisation throughout the reactor. The bacterial community was diverse and included fermenting bacteria and Desulfosporosinus-like sulphate-reducing bacteria. arrA genes, involved in dissimilatory reduction of As(V), were found and the retrieved sequences suggested that As(V) was reduced by a Desulfosporosinus-like organism. This study was the first to show that As can be removed by bioprecipitation of orpiment from acidic solution containing up to 100 mg L−1 As(V) in a bioreactor.  相似文献   

2.
Long-term exposure to inorganic arsenic from artesian drinking well water is associated with carotid atherosclerosis in the Blackfoot Disease (BFD)-hyperendemic area in Taiwan. The current study examined the arsenic methylation capacity and its risk on carotid atherosclerosis. A total of 304 adults (158 men and 146 women) residing in the BFD-hyperendemic area were included. The extent of carotid atherosclerosis was assessed by duplex ultrasonography. Chronic arsenic exposure was estimated by an index of cumulative arsenic exposure (CAE) and the duration of artesian well water consumption. Urinary levels of inorganic arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid [MMA(V)] and dimethylarsinic acid [DMA(V)] were determined by high performance liquid chromatography linked on-line to a hydride generator and atomic absorption spectrometry (HPLC-HG-AAS). The percentage of arsenic species, primary methylation index [PMI = MMA(V) / (As(III) + As(V)] and secondary methylation index [SMI = DMA(V) / MMA(V)] were calculated and employed as indicators of arsenic methylation capacity. Results showed that women and younger subjects had a more efficient arsenic methylation capacity than did men and the elderly. Carotid atherosclerosis cases had a significantly greater percentage of MMA(V) [%MMA(V)] and a lower percentage of DMA [%DMA (V)] compared to controls. Subjects in the highest two tertiles of PMI with a median of CAE > 0 mg/L-year had an odds ratio (OR) and a 95% confidence interval (CI) of carotid atherosclerosis of 2.61 and 0.98-6.90 compared to those in the highest two tertiles of PMI with a CAE = 0 mg/L-year. We conclude that individuals with greater exposure to arsenic and lower capacity to methylate inorganic arsenic may be at a higher risk to carotid atherosclerosis.  相似文献   

3.
Magnetite nanoparticles were used to treat arsenic‐contaminated water. Because of their large surface area, these particles have an affinity for heavy metals by adsorbing them from a liquid phase. The results of the study showed that the maximum arsenic adsorption occurred at pH 2, with a value of approximately 3.70 mg/g for both As(III) and As(V) when the initial concentration of both arsenic species was maintained at 2 mg/L. The study showed that, apart from pH, the removal of arsenic from contaminated water also depends on the contact time, the initial concentration of arsenic, the phosphate concentration in the water and the adsorbent concentration. The results suggest that arsenic adsorption involved the formation of weak arsenic–iron oxide complexes at the magnetite surface. At a fixed adsorbent (magnetite nanoparticles) concentration of 0.4 g/L, percent arsenic removal decreased with increasing phosphate concentration. Magnetite nanoparticles removed <50% of arsenic from water containing >6 mg/L phosphate. In this case, an optimum design for achieving high arsenic removal by magnetite nanoparticles may be required.  相似文献   

4.
Exposure to arsenic through drinking water poses a threat to human health. Electrocoagulation is a water treatment technology that involves electrolytic oxidation of anode materials and in-situ generation of coagulant. The electrochemical generation of coagulant is an alternative to using chemical coagulants, and the process can also oxidize As(III) to As(V). Batch electrocoagulation experiments were performed in the laboratory using iron electrodes. The experiments quantified the effects of pH, initial arsenic concentration and oxidation state, and concentrations of dissolved phosphate, silica and sulfate on the rate and extent of arsenic removal. The iron generated during electrocoagulation precipitated as lepidocrocite (γ-FeOOH), except when dissolved silica was present, and arsenic was removed by adsorption to the lepidocrocite. Arsenic removal was slower at higher pH. When solutions initially contained As(III), a portion of the As(III) was oxidized to As(V) during electrocoagulation. As(V) removal was faster than As(III) removal. The presence of 1 and 4 mg/L phosphate inhibited arsenic removal, while the presence of 5 and 20 mg/L silica or 10 and 50 mg/L sulfate had no significant effect on arsenic removal. For most conditions examined in this study, over 99.9% arsenic removal efficiency was achieved. Electrocoagulation was also highly effective at removing arsenic from drinking water in field trials conducted in a village in Eastern India. By using operation times long enough to produce sufficient iron oxide for removal of both phosphate and arsenate, the performance of the systems in field trials was not inhibited by high phosphate concentrations.  相似文献   

5.
Since 1997, over 135 well-head arsenic removal units have been installed in remote villages in the Indian state of West Bengal bordering Bangladesh. Every component of the arsenic removal treatment system including activated alumina sorbent is procured indigenously. Each unit serves approximately 200-300 households and contains about 100 L of activated alumina. No chemical addition, pH adjustment or electricity is required for operating these units. The arsenic concentration in the influent varies from around 100 μg/L to greater than 500 μg/L. In the treated water, arsenic concentration is consistently below 50 μg/L. The units are capable of removing both arsenites and arsenates from the contaminated groundwater for several months, often exceeding 10,000 bed volumes. In the top portion of the column, the dissolved iron present in ground water is oxidized by atmospheric oxygen into hydrated Fe(III) oxides or HFO particles which in turn selectively bind both As(III) and As(V). Upon exhaustion, these units are regenerated by caustic soda solution followed by acid wash. The arsenic-laden spent regenerant is converted into a small volume sludge (less than 500 g) and contained over a coarse sand filter in the same premise requiring no disposal. Many units have been operating for several years without any significant operational difficulty. The treated water is used for drinking and cooking. Most importantly, the villagers are responsible for the day to day operation and the upkeep of the units.  相似文献   

6.
Arsenic accumulation in irrigated agricultural soils in Northern Greece   总被引:1,自引:0,他引:1  
The accumulation of arsenic in soils and food crops due to the use of arsenic contaminated groundwater for irrigation has created worldwide concern. In the Chalkidiki prefecture in Northern Greece, groundwater As reach levels above 1000 μg/L within the Nea Triglia geothermal area. While this groundwater is no longer used for drinking, it represents the sole source for irrigation.This paper provides a first assessment of the spatial extent of As accumulation and of As mobility during rainfall and irrigation periods. Arsenic content in sampled soils ranged from 20 to 513 mg/kg inside to 5-66 mg/kg outside the geothermal area. Around irrigation sprinklers, high As concentrations extended horizontally to distances of at least 1.5 m, and to 50 cm in depth. During simulated rain events in soil columns (pH = 5, 0 μg As/L), accumulated As was quite mobile, resulting in porewater As concentrations of 500-1500 μg/L and exposing plant roots to high As(V) concentrations. In experiments with irrigation water (pH = 7.5, 1500 μg As/L), As was strongly retained (50.5-99.5%) by the majority of the soils. Uncontaminated soils (< 30 mg As/kg) kept soil porewater As concentrations to below 50 μg/L. An estimated retardation factor Rf = 434 for weakly contaminated soil (< 100 mg/kg) indicates good ability to reduce As mobility. Highly contaminated soils (> 500 mg/kg) could not retain any of the added As. Invoked mechanisms affecting As mobility in those soils were adsorption on solid phases such as Fe/Mn-phases and As co-precipitation with Ca. Low As accumulation was found in collected olives (0.3-25 μg/kg in flesh and 0.3-5.6 μg/kg in pits). However, soil arsenic concentrations are frequently elevated to far above recommended levels and arsenic uptake in faster growing plants has to be assessed.  相似文献   

7.
Chemical reactions between arsenic and zero-valent iron in water   总被引:2,自引:0,他引:2  
Batch experiments and X-ray photoelectron spectroscopic (XPS) analyses were performed to study the reactions between arsenate [As(V)], arsenite [As(III)] and zero-valent iron [Fe(0)]. The As(III) removal rate was higher than that for As(V) when iron filings (80-120 mesh) were mixed with arsenic solutions purged with nitrogen gas in the pH range of 4-7. XPS spectra of the reacted iron coupons showed the reduction of As(III) to As(0). Soluble As(III) was formed when As(V) reacted with Fe(0) under anoxic conditions. However, no As(0) was detected on the iron coupons after 5 days of reaction in the As(V)-Fe(0) system. The removal of the arsenic species by Fe(0) was attributed to electrochemical reduction of As(III) to sparsely soluble As(0) and adsorption of As(III) and As(V) to iron hydroxides formed on the Fe(0) surface under anoxic conditions. When the solutions were open to atmospheric air, the removal rates of As(V) and As(III) were much higher than under the anoxic conditions, and As(V) removal was faster than As(III). The rapid removal of As(III) and As(V) was caused by adsorption on ferric hydroxides formed readily through oxidation of Fe(0) by dissolved oxygen.  相似文献   

8.
High arsenic groundwater in the Quaternary aquifers of Datong Basin, northern China contain As up to 1820 µg/L and the high concentration plume is located in the slow flowing central parts of the basin. In this study we used hydrochemical data and sulfur isotope ratios of sulfate to better understand the conditions that are likely to control arsenic mobilization. Groundwater and spring samples were collected along two flow paths from the west and east margins of the basin and a third set along the basin flow path. Arsenic concentrations range from 68 to 670 µg/L in the basin and from 3.1 to 44 µg/L in the western and eastern margins. The margins have relatively oxidized waters with low contents of arsenic, relatively high proportions of As(V) among As species, and high contents of sulfate and uranium. By contrast, the central parts of the basin are reducing with high contents of arsenic in groundwater, commonly with high proportions of As(III) among As species, and low contents of sulfate and uranium. No statistical correlations were observed between arsenic and Eh, sulfate, Fe, Mn, Mo and U. While the mobility of sulfate, uranium and molybdenum is possibly controlled by the change in redox conditions as the groundwater flows towards central parts of the basin, the reducing conditions alone cannot account for the occurrence of high arsenic groundwater in the basin but it does explain the characteristics of arsenic speciation. With one exception, all the groundwaters with As(III) as the major As species have low Eh and those with As(V) have high Eh. Reductive dissolution of Fe-oxyhydroxides or reduction of As(V) are consistent with the observations, however no increase in dissolved Fe concentration was noted. Furthermore, water from the well with the highest arsenic was relatively oxidizing and contained mostly As(V). From previous work Fe-oxyhydroxides are speculated to exist as coatings rather than primary minerals.The wide range of δ34S[SO4] values (from − 2.5 to + 36.1‰) in the basin relative to the margins (from + 8‰ to + 15‰) indicate that sulfur is undergoing redox cycling. The highly enriched values point to sulfate reduction that was probably mediated by bacteria. The presence of monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) is also evidence of microbial reactions. The depleted signatures indicate that some oxidation of depleted sulfide occurred in the basin. It must be noted that the samples with depleted sulfur isotope values have very low sulfate concentrations and therefore even a small amount of sulfide oxidation will bias the ratio. No significant correlation was observed between δ34S[SO4] values and total arsenic contents when all the samples were considered. However, the wells in the central basin do appear to become enriched in δ34S[SO4] as arsenic concentration increases. Although there is evidence for sulfate reduction, it is clear that sulfate reduction does not co-precipitate or sequester arsenic. The one sample with high arsenic that is oxidizing cannot be explained by oxidation of pyrite and is likely an indication that there are multiple redox zones that control arsenic speciation but not necessarily its mobilization and contradict the possibility that Fe-oxyhydroxides sorb appreciable amounts of arsenic in this study area. It is evident that this basin like other two young sedimentary basins (Huhhot and Hetao in Inner Mongolia) of northern China with high arsenic groundwater is transporting arsenic at a very slow rate. The data are consistent with the possibility that the traditional models of arsenic mobilization, namely reductive dissolution of Fe-oxyhydroxides, reduction of As(V) to more mobile As(III), and bacteria mediated reactions, are active to varying degrees. It is also likely that different processes control arsenic mobilization at different locations of the basin and more detailed studies along major flow paths upgradient of the high arsenic aquifers will shed more light on the mechanisms.  相似文献   

9.
A study on the removal of arsenic from real life groundwater using iron–chitosan composites is presented. Removal of arsenic(III) and arsenic(V) was studied through adsorption at pH 7.0 under equilibrium and dynamic conditions. The equilibrium data were fitted to Langmuir adsorption models and the various model parameters were evaluated. The monolayer adsorption capacity from the Langmuir model for iron chitosan flakes (ICF) (22.47 ± 0.56 mg/g for As(V) and 16.15 ± 0.32 mg/g for As(III)) was found to be considerably higher than that obtained for iron chitosan granules (ICB) (2.24 ± 0.04 mg/g for As(V); 2.32 ± 0.05 mg/g for As(III)). Anions including sulfate, phosphate and silicate at the levels present in groundwater did not cause serious interference in the adsorption behavior of arsenate/arsenite. The column regeneration studies were carried out for two sorption–desorption cycles for both As(III) and As(V) using ICF and ICB as sorbents. One hundred and forty-seven bed volumes of As(III) and 112 bed volumes of As(V) spiked groundwater were treated in column experiments using ICB, reducing arsenic concentration from 500 to <10 μg/l. The eluent used for the regeneration of the spent sorbent was 0.1 M NaOH. The adsorbent was also successfully applied for the removal of total inorganic arsenic down to <10 μg/l from real life arsenic contaminated groundwater samples.  相似文献   

10.
A study on arsenic adsorption on polymetallic sea nodule in aqueous medium   总被引:2,自引:0,他引:2  
A detailed study on As(III) and As(V) adsorption on polymetallic sea nodule in aqueous medium has been reported. Elemental composition of sea nodule comprises primarily, iron, manganese and silicon with trace quantities of aluminium, copper, cobalt and nickel. As(V) adsorption on sea nodule is dependent on pH while As(III) is insensitive to it. Adsorption data broadly follow Langmuir isotherm. Kinetic data follow a pseudo-second-order model for both As(III) and As(V). Arsenic loading on sea nodule is dependent on initial arsenic concentration. Optimum As(III) loading is 0.74 mg/g at 0.34 mg/L and for As(V) it is 0.74 mg/g at 0.78mg/L. As(III) adsorption is broadly independent of ionic environment. Except for PO(4)(3-), As(III) adsorption is not influenced by anions but cations influence it significantly. As(V) adsorption, on the other hand, is influenced by anions and not by cations. Experimental evidence indicates an inner sphere complex for As(III) and partial inner and partial outer sphere complex for As(V). Both As(III) and As(V) adsorptions are marked with very little desorption in the pH range of 2-10. Sea nodule can speciate As(III) and As(V) in groundwater at or above pH 6. Sea nodule was successfully tested as an adsorbent for the removal of arsenic from six contaminated groundwater samples of West Bengal, India, containing arsenic in the range 0.04-0.18mg/L.  相似文献   

11.
The potential of activated sludge to catalyse bio-oxidation of arsenite [As(III)] to arsenate [As(V)] and bio-reduction of As(V) to As(III) was investigated. In batch experiments (pH 7, 25 degrees C) using activated sludge taken from a treatment plant receiving municipal wastewater non-contaminated with As, As(III) and As(V) were rapidly biotransformed to As(V) under aerobic condition and As(III) under anaerobic one without acclimatisation, respectively. Sub-culture of the activated sludge using a minimal liquid medium containing 100mg As(III)/L and no organic carbon source showed that aerobic arsenic-resistant bacteria were present in the activated sludge and one of the isolated bacteria was able to chemoautotrophically oxidise As(III) to As(V). Analysis of arsenic species in a full-scale oxidation ditch plant receiving As-contaminated wastewater revealed that both As(III) and As(V) were present in the influent, As(III) was almost completely oxidised to As(V) after supply of oxygen by the aerator in the oxidation ditch, As(V) oxidised was reduced to As(III) in the anaerobic zone in the ditch and in the return sludge pipe, and As(V) was the dominant species in the effluent. Furthermore, co-precipitation of As(V) bio-oxidised by activated sludge in the plant with ferric hydroxide was assessed by jar tests. It was shown that the addition of ferric chloride to mixed liquor as well as effluent achieved high removal efficiencies (>95%) of As and could decrease the residual total As concentrations in the supernatant from about 200 microg/L to less than 5 microg/L. It was concluded that a treatment process combining bio-oxidation with activated sludge and coagulation with ferric chloride could be applied as an alternative technology to treat As-contaminated wastewater.  相似文献   

12.
A cross sectional study was carried out to evaluate arsenic exposure of residents living in an area with a soil naturally rich in arsenic (As), through urinary measurements. During the summer of 2007, 322 people aged over 7 years and resident in the study area for at least 4 days prior to the investigation were recruited. The sum of urinary inorganic arsenic and metabolites (iAs + MMA + DMA) and speciation were determined by graphite furnace atomic absorption spectrometry and high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry, respectively. Geometric means levels of iAs + MMA + DMA were 3.6 µg/L or 4.4 µg/g creatinine. The percent of DMA, As(III) and MMA contribution to urinary arsenic concentrations was respectively 84.2%, 12% and 3.7%. We found significant associations between urinary arsenic concentrations and the consumption of seafood (p = 0.03), the consumption of wine (p = 0.03) and beer (p = 0.001), respectively 3 and 4 days before the investigation. When we focus on the various species, As(V) was rarely detected and DMA is the predominant metabolite composing the majority of measurable inorganic-related As in the urine. Considering the percent of DMA contribution to iAs + MMA + DMA urinary concentrations, almost half of the subjects had 100% of DMA contribution whatever the concentration of urinary As whereas the others had a lower DMA contribution, between 39 and 90%.Arsenic levels reported in this original study in France were between 2 and 4 times lower than in other studies dealing with iAs + MMA + DMA levels associated with soil arsenic exposure. Arsenic levels were similar to those observed in unexposed individuals in European countries, although 10% were above the French guideline values for the general population.  相似文献   

13.
Polyaluminum chloride (PACl) is a well-established coagulant in water treatment with high removal efficiency for arsenic. A high content of Al30 nanoclusters in PACl improves the removal efficiency over broader dosage and pH range. In this study we tested PACl with 75% Al30 nanoclusters (PAClAl30) for the treatment of arsenic-contaminated well water by laboratory batch experiments and field application in the geothermal area of Chalkidiki, Greece, and in the Pannonian Basin, Romania. The treatment efficiency was studied as a function of dosage and the nanoclusters’ protonation degree. Acid-base titration revealed increasing deprotonation of PAClAl30 from pH 4.7 to the point of zero charge at pH 6.7. The most efficient removal of As(III) and As(V) coincided with optimal aggregation of the Al nanoclusters at pH 7-8, a common pH range for groundwater. The application of PAClAl30 with an Altot concentration of 1-5 mM in laboratory batch experiments successfully lowered dissolved As(V) concentrations from 20 to 230 μg/L to less than 5 μg/L. Field tests confirmed laboratory results, and showed that the WHO threshold value of 10 μg/L was only slightly exceeded (10.8 μg/L) at initial concentrations as high as 2300 μg/L As(V). However, As(III) removal was less efficient (<40%), therefore oxidation will be crucial before coagulation with PAClAl30. The presence of silica in the well water improved As(III) removal by typically 10%. This study revealed that the Al30 nanoclusters are most efficient for the removal of As(V) from water resources at near-neutral pH.  相似文献   

14.
In this study, the influence of eutrophication on arsenic speciation in lake waters was investigated. Surface water samples (n = 1-10) were collected from 18 lakes in Japan during July 2007 and February 2008. The lakes were classified into mesotrophic (7 lakes) and eutrophic (11 lakes) based on the total phosphate (T-P) and chlorophyll-a (Chl-a) concentrations in water column. Inorganic, methylated and ultraviolet-labile fractions of arsenic species were determined by combining hydride generation atomic absorption spectrometry with ultraviolet irradiation. Organoarsenicals (mainly methylated and ultraviolet-labile fractions) comprised 30-60% of the total arsenic in most lakes during summer. On the other hand, inorganic arsenic species (As(III + V)) dominates (about 60-85%) during winter. The occurrence of ultraviolet-labile fractions of arsenic was higher in eutrophic lakes than those in mesotrophic lakes in both seasons. The concentration of dimethyl arsenic (DMAA) was high in eutrophic lakes during winter; and in mesotrophic lakes during summer. The results suggest that the conversion of As(III + V) to more complicated organoarsenicals occurred frequently in eutrophic lakes compared to that in mesotrophic lakes, which is thought to be the influence of biological activity in the water column. The distribution of arsenic species were well correlated with phosphate concentrations than those of Chl-a. This might be due to the competitive uptake of As(V) and phosphate by phytoplankton. The organoarsenicals (OrgAs)/As(V) ratio was higher at low phosphate concentration indicating that conversion of As(V) to OrgAs species was more active in phosphate-exhausted lakes with high phytoplankton density.  相似文献   

15.
The Cretaceous and Tertiary sediments that underlie the Inner Coastal Plain of New Jersey contain the arsenic-rich mineral glauconite. Streambed sediments in two Inner Coastal Plain streams (Crosswicks and Raccoon Creeks) that traverse these glauconitic deposits are enriched in arsenic (15-25 mg/kg), and groundwater discharging to the streams contains elevated levels of arsenic (>80 μg/L at a site on Crosswicks Creek) with arsenite generally the dominant species. Low dissolved oxygen, low or undetectable levels of nitrate and sulfate, detectable sulfide concentrations, and high concentrations of iron and dissolved organic carbon (DOC) in the groundwater indicate that reducing environments are present beneath the streambeds and that microbial activity, fueled by the DOC, is involved in releasing arsenic and iron from the geologic materials. In groundwater with the highest arsenic concentrations at Crosswicks Creek, arsenic respiratory reductase gene (arrA) indicated the presence of arsenic-reducing microbes. From extracted DNA, 16s rRNA gene sequences indicate the microbial community may include arsenic-reducing bacteria that have not yet been described. Once in the stream, iron is oxidized and precipitates as hydroxide coatings on the sediments. Arsenite also is oxidized and co-precipitates with or is sorbed to the iron hydroxides. Consequently, dissolved arsenic concentrations are lower in streamwater than in the groundwater, but the arsenic contributed by groundwater becomes part of the arsenic load in the stream when sediments are suspended during high flow. A strong positive relation between concentrations of arsenic and DOC in the groundwater samples indicates that any process—natural or anthropogenic—that increases the organic carbon concentration in the groundwater could stimulate microbial activity and thus increase the amount of arsenic that is released from the geologic materials.  相似文献   

16.
Dhoble RM  Lunge S  Bhole AG  Rayalu S 《Water research》2011,45(16):4769-4781
Magnetic binary oxide particles (MBOP) synthesized using chitosan template has been investigated for uptake capacity of arsenic (III). Batch experiments were performed to determine the rate of adsorption and equilibrium isotherm and also effect of various rate limiting factors including adsorbent dose, pH, optimum contact time, initial adsorbate concentration and influence of presence cations and anions. It was observed that uptake of arsenic (III) was independent of pH of the solution. Maximum adsorption of arsenic (III) was ∼99% at pH 7.0 with dose of adsorbent 1 g/L and initial As (III) concentration of 1.0 mg/L at optimal contact time of 14 h. The adsorption equilibrium data fitted well to Langmuir and Freundlich isotherm. The maximum adsorption capacity of adsorbent was 16.94 mg/g. With increase in concentration of Ca2+, Mg2+ from 50 mg/L to 600 mg/L, adsorption of As (III) was significantly reduced while for Fe3+ the adsorption of arsenic (III) was increased with increase in concentration. Temperature study was carried out at 293 K, 303 K and 313 K reveals that the adsorption process is exothermic nature. A distinct advantage of this adsorbent is that adsorbent can readily be isolated from sample solutions by application of an external magnetic field. Saturation magnetization is a key factor for successful magnetic separation was observed to be 18.78 emu/g which is sufficient for separation by conventional magnate.  相似文献   

17.
Groundwater in a sand and gravel aquifer was contaminated by arsenic compounds. The extent and the As concentration of the polluted groundwater plume decreased from 1971 to 1975, whereas the content of free dissolved oxygen increased. High As concentrations (> 1 mg/1) occured in groundwater with typical characteristics of a “reduced” water with negative Eh values and high concentrations of dissolved iron (up to 140 mg/1 in 1971). When plotted into an As stability field diagram, the higher values (> 1 mg As/1) coincided with the fields of trivalent As species, whereas the lower values (< 0.1 mg As/1) fitted to the fields of the pentavalent arsenic species. Therefore it was concluded that an improvement of the oxygen supply should accelerate the natural precipitation processes. By injection of 29,000 kg KMnO4 into 17 wells and piezometers the soluble As (III) species were oxidized to As (V) species, which were precipitated as FeAsO4 or Mn3(AsO4)2 or co-precipitated with Mn- and Fe-hydroxides.  相似文献   

18.
In this research, we investigated a chemical extraction process, under subcritical conditions, for arsenic (As)-contaminated soil in the vicinity of an abandoned smelting plant in South Korea. The total concentration of As in soil was 75.5 mg/kg, 68% of which was As(+ III). X-ray photoelectron spectroscopy analysis showed that the possible As(+ III)-bearing compounds in the soil were As2O3 and R-AsOOH. At 20 °C, 100 mM of NaOH could extract 26% of the As from the soil samples. In contrast, 100 mM of ethylenediaminetetraacetic acid (EDTA) and citric acid showed less than 10% extraction efficiency. However, as the temperature increased to 250 and 300 °C, extraction efficiencies increased to 75-91% and 94-103%, respectively, regardless of the extraction reagent used. Control experiments with subcritical water at 300 °C showed complete extraction of As from the soil. Arsenic species in the solution extracted at 300 °C indicated that subcritical water oxidation may be involved in the dissolution of As(+ III)-bearing minerals under given conditions. Our results suggest that subcritical water extraction/oxidation is a promising option for effective disposal of As-contaminated soil.  相似文献   

19.
Sun W  Sierra R  Field JA 《Water research》2008,42(17):4569-4577
In this study, denitrification linked to the oxidation of arsenite (As(III)) to arsenate (As(V)) was shown to be a widespread microbial activity in anaerobic sludge and sediment samples that were not previously exposed to arsenic contamination. When incubated with 0.5 mM As(III) and 10 mM NO3, the anoxic oxidation of As(III) commenced within a few days, achieving specific activities of up to 1.24 mmol As(V) formed g−1 volatile suspended solids d−1 due to growth (doubling times of 0.74-1.4 d). The anoxic oxidation of As(III) was partially to completely inhibited by 1.5 and 5 mM As(III), respectively. Inhibition was minimized by adding As(III) adsorbed onto activated aluminum (AA). The oxidation of As(III) was shown to be linked to the complete denitrification of NO3 to N2 by demonstrating a significantly enhanced production of N2 beyond the background endogenous production as a result of adding As(III)-AA to the cultures. The N2 production corresponded closely the expected stoichiometry of the reaction, 2.5 mol As(III) mol−1 N2-N. The oxidation of As(III) linked to the use of common-occurring nitrate as an electron acceptor may be an important missing link in the biogeochemical cycling of arsenic.  相似文献   

20.
The toxic and carcinogenic properties of inorganic and organic arsenic species make their determination in natural water vitally important. Determination of individual inorganic and organic arsenic species is critical because the toxicology, mobility, and adsorptivity vary substantially. Several methods for the speciation of arsenic in groundwater, surface-water, and acid mine drainage sample matrices using field and laboratory techniques are presented. The methods provide quantitative determination of arsenite [As(III)], arsenate [As(V)], monomethylarsonate (MMA), dimethylarsinate (DMA), and roxarsone in 2-8 min at detection limits of less than 1 microg arsenic per liter (microg As L(-1)). All the methods use anion exchange chromatography to separate the arsenic species and inductively coupled plasma-mass spectrometry as an arsenic-specific detector. Different methods were needed because some sample matrices did not have all arsenic species present or were incompatible with particular high-performance liquid chromatography (HPLC) mobile phases. The bias and variability of the methods were evaluated using total arsenic, As(III), As(V), DMA, and MMA results from more than 100 surface-water, groundwater, and acid mine drainage samples, and reference materials. Concentrations in test samples were as much as 13,000 microg As L(-1) for As(III) and 3700 microg As L(-1) for As(V). Methylated arsenic species were less than 100 microg As L(-1) and were found only in certain surface-water samples, and roxarsone was not detected in any of the water samples tested. The distribution of inorganic arsenic species in the test samples ranged from 0% to 90% As(III). Laboratory-speciation method variability for As(III), As(V), MMA, and DMA in reagent water at 0.5 microg As L(-1) was 8-13% (n=7). Field-speciation method variability for As(III) and As(V) at 1 microg As L(-1) in reagent water was 3-4% (n=3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号