首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
金刚石膜以其最高的硬度、热导率、热震性能以及极高的强度等优点得到了越来越多的关注。自20世纪低压化学气相沉积技术成功制备出金刚石以来,在世界范围内,金刚石的制备技术及应用研究得到了快速发展。分别对国内外自支撑金刚石膜材料的制备技术及相关应用进行简要介绍,并讨论近几年我国在高质量金刚石膜材料制备技术方面取得的进展。目前主要的制备技术有热丝、直流辅助等离子体、直流电弧等离子体喷射、微波等离子体化学气相沉积(CVD)等方法。在小尺寸、高质量金刚石膜的制备技术基础上,21世纪初,国外几大技术强国先后宣布实现了大面积、高质量CVD金刚石膜的制备,并将其用于诸如红外光学窗口等高技术领域。我国也在CVD金刚石膜研发方面不断进步,先后掌握了热丝、直流电弧等离子体喷射、直流辅助等离子体CVD等合成大面积金刚石自支撑膜技术,近几年也掌握了915 MHz微波等离子体CVD技术,这些成果也标志着我国在高质量金刚石膜制备技术领域跟上了世界先进水平。  相似文献   

2.
微波等离子体化学气相沉积金刚石薄膜的进展   总被引:3,自引:0,他引:3  
郑怀礼 《表面技术》1997,26(3):4-5,35
评述了用微波等离子体化学气相沉积法制备高质量人造金刚石薄膜的最新动态和发展趋势,介绍的内容包括:制备仪器、应用领域、沉积条件等。  相似文献   

3.
陈辉  汪建华  翁俊  孙祁 《硬质合金》2013,30(2):53-58
以H2和CH4的混合气体为气源,使用实验室自制10 kW新型装置,采用微波等离子体化学气相沉积法(MPCVD)在Si(100)基体上沉积金刚石薄膜,然后采用扫描电镜(SEM)、Raman光谱以及XRD光谱,以得到表面形貌、样品质量和晶面取向等信息,由此获得微波功率对金刚石薄膜取向的影响。结果表明,微波功率对金刚石膜的质量、表面形貌和晶面取向都有明显地影响,随着微波功率升高,金刚石薄膜的形貌变得规则,薄膜中Isp3/Isp2由1.52提高到6.58,其沉积晶面的I(100)/I(111)由0.38提高到3.93。当微波功率为4 900 W时,所得沉积样品晶面以(100)为主,形貌规则,纯度很高。  相似文献   

4.
采用直流等离子体CVD法制备了金刚石膜,利用X射线衍射、光学显微镜、扫描电镜、激光拉曼光谱等技术研究了金刚石膜的微观组织,晶粒择优取向生长过程。结果表明:开始形核时,晶粒随机无择优生长;对基体表面氢刻蚀预处理,有利于晶胚形核长大。甲烷浓度对金刚石膜晶粒择优取向生长有重要影响:甲烷浓度较低时,金刚石膜(100)面择优生长,形成以(111)为主的八面体晶体,并且可以制取中心和边缘均匀、高质量光学级自支撑金刚石膜,但生长速率慢,效率低。同时也发现金刚石膜存在空位、孔洞等缺陷。  相似文献   

5.
通过微波等离子体化学气相沉积(MPCVD)法,以CH4/H2为气源,合成高质量金刚石薄膜,在150 W低微波功率下,从衬底预处理方法、沉积气压、流量比等方面对制备高质量金刚石薄膜的工艺参数进行研究.结果表明:高流量比不利于金刚石颗粒的粒径控制,二次形核的存在可以获得近纳米级颗粒尺寸的金刚石薄膜;较大的沉积气压有利于制备...  相似文献   

6.
采用3 kW/2 450 MHz微波等离子体化学气相沉积(microwave plasma chemical vapor deposition, MPCVD)系统,以单晶硅为基底材料,采用单因素试验法研究微米级金刚石膜的生长工艺,分别探究衬底温度、腔体压强和甲烷体积分数对金刚石成膜过程的影响,获得微米级金刚石膜的最优生长工艺。结果表明:金刚石膜的生长速率与衬底温度、腔体压强、甲烷体积分数呈正相关;衬底温度和腔体压强对金刚石膜质量的影响存在最佳的临界值,甲烷体积分数过高不利于形成金刚石相。金刚石膜生长的最佳工艺参数为:功率为2 200 W,衬底温度为850 ℃,腔体压强为14 kPa,甲烷的体积分数为2.5%。在此条件下,金刚石膜生长速率为1.706 μm/h,金刚石相含量为87.92%。   相似文献   

7.
利用微波等离子体化学气相沉积法,以H2/CH4/CO2为混合气源,在Si基底上沉积金刚石膜,分析了微波功率和CO2对金刚石膜生长的影响。利用Raman光谱、扫描电子显微镜(SEM)和X射线衍射(XRD)表征金刚石膜,以得到样品质量、表面形貌、晶粒取向等信息。结果表明:适当提高微波功率,可以促进金刚石晶粒长大并提高(100)取向度;加入适量CO2,能提高金刚石膜质量和生长速率,并保持表面形貌不会发生明显变化,但随着CO2含量的增加,金刚石表面形貌发生较大变化,薄膜质量和沉积速率先提高后降低。   相似文献   

8.
《硬质合金》2014,(4):236-240
采用微波等离子体化学气相沉积(MPCVD)法,分别制备了CH4/H2体系、CH4/H2/N2体系以及CH4/H2/Ar体系金刚石薄膜。主要采用了扫描电子显微镜(SEM)、激光拉曼光谱(Raman)和X射线衍射光谱(XRD)等方法对不同体系中制备的金刚石薄膜的晶粒尺寸及其品质进行了分析,研究了不同高浓度气体对金刚石薄膜的影响。结果显示:利用高浓度的甲烷可以在很大程度上细化晶粒,制备出纳米晶金刚石薄膜,但是薄膜的非晶相较多,品质下降;加入70%N2,薄膜中的金刚石晶粒生长速度较慢,但可制备出均匀的纳米晶金刚石薄膜;70%的Ar气氛中,金刚石晶粒生长较快,制得的薄膜中的金刚石晶粒是微米级别的。  相似文献   

9.
10.
研究硅掺杂对CVD金刚石薄膜形貌、结构特性和成分的影响。通过向丙酮中加入正硅酸乙酯作为反应气体,在硅基底上沉积硅掺杂CVD金刚石薄膜。金刚石薄膜的表面形貌和显微组织由场发射电镜表征。金刚石薄膜的成分通过拉曼光谱和X射线衍射(XRD)进行研究。薄膜的表面粗糙度由表面轮廓仪评估。结果表明,硅掺杂会降低晶粒尺寸,促进晶粒细化并抑制三角锥形形貌。XRD研究表明,(111)朝向的晶面显著减少。拉曼光谱研究表明,硅掺杂会促进薄膜中硅碳键的形成以及非金刚石相的增多。在硅碳浓度比为1%时,沉积得到光滑的细晶粒金刚石薄膜。  相似文献   

11.
本文基于化学气相沉积(CVD)金刚石膜的超高热导率,设计并搭建了一套实验系统,分析其对于小空间高热流密度电子元件的散热效果。通过测量加热器及材料表面的温度值可知,相同工况下,金刚石膜温度梯度小,温度分布均匀性好,表面最大温差仅为铜的一半且加热面温度相比于铜更低。实验结果说明CVD金刚石膜的散热性能明显优于传统散热材料铜。实验验证了经过Ti-Ni-Au金属化处理的CVD金刚石薄膜具有可焊性。在实验基础上,利用Flotherm软件对系统进行仿真建模,进一步探讨了材料厚度、热导率及接触热阻对加热面温度和最大热流密度的影响。  相似文献   

12.
对化学气相沉积(CVD)多晶金刚石膜进行激光平整化的正交试验,使用场发射环境扫描电子显微镜(SEM)进行形貌分析,激光共聚焦扫描显微镜测量线粗糙度Ra、面粗糙度Sa和切缝锥度,分析激光参数对CVD膜平整化的影响。结果表明:影响切缝锥度的因素依次为脉冲宽度、脉冲频率、进给速度和激光电流,影响线粗糙度Ra的因素依次为进给速度、激光电流、脉冲频率、脉冲宽度。正交试验优化后,当激光电流为64 A、脉冲宽度为400μs、脉冲频率为275 Hz、进给速度为100 mm/min时,可获得最佳的切槽表面形貌。采用该优化参数进行面扫描,测得面粗糙度Sa为11.7μm;进一步增加入射角度至75°时,面粗糙度Sa降低至1.9μm,实际去除效率达到1.1 mm3/min。  相似文献   

13.
化学气相沉积金刚石膜的研究与应用进展   总被引:3,自引:0,他引:3  
化学气相沉积(CVD)金刚石膜具有极其优异的电学(电子学)、光学、热学、力学、声学和电化学性能的组合,因此在一系列高新技术领域有非常好的应用前景,并曾在20世纪80年代中期形成席卷全球的"金刚石热"。30余年来,CVD金刚石膜研究取得了极其巨大的进展,但在产业化应用方面仍不尽人意。本文对此进行了比较详尽地综述和评论,希望更多的人了解,并推进其研究和产业化进展。  相似文献   

14.
A new method, called growing-etching repetitional process based on hot filament chemical vapor deposition, was proposed to improve the quality of diamond film. During the deposition carbon source was intermittently closed letting hydrogen etch the surface of the diamond film fi'om time to time. In order to find whether it is helpful to the films' quality, a series of experiments were done. The results show that the new method can enhance the orientation of the chemical vapor deposition diamond films, reduce the graphite phase and increase the film's surface resistivity.  相似文献   

15.
干法刻蚀图形化CVD金刚石膜研究进展   总被引:1,自引:0,他引:1  
CVD金刚石膜因其极高的强度和耐磨特性在微机电系统(MEMS)领域具有极好的应用前景,然而其极高的硬度和化学惰性又使其很难被加工成型,这极大地限制了CVD金刚石膜在MEMS领域的应用。本文主要介绍了近年来干法刻蚀图形化CVD金刚石膜的研究进展,系统地分析了激光刻蚀,等离子体刻蚀,等离子体辅助固体刻蚀的原理及其各自优缺点,着重论述了国内外采用等离子体刻蚀CVD金刚石膜的研究现状。  相似文献   

16.
本文重点对近年硬质合金基体表面预处理方法及其对CVD金刚石膜沉积的影响进行了综述。按其原理来分,预处理方法可分为物理预处理法、化学预处理法以及中间层法。大量实验结果表明通过适当的预处理能有效消除或抑制基体中钴黏结相的负面影响,提高金刚石的形核密度以及膜基结合力,从而获得理想的薄膜质量。  相似文献   

17.
为提高热丝CVD法沉积金刚石薄膜的生长速率,以丙酮和氢气作为反应气源,利用自制的半封闭式空间约束装置,将热丝、衬底、反应气体聚集在狭小空间内,研究不同气体流速条件下的金刚石薄膜沉积情况;使用SEM和Raman光谱表征所合成的薄膜。结果表明:采用约束式沉积法可以显著提高沉积速率,本实验在230 cm3/min(标况)气体流速下获得最大沉积速率6.31 μm/h,比未约束时增大了近一倍。随着气体流速增大,沉积速率先增大后减小;气体流速86~115 cm3/min(标况)时,晶粒尺寸为微米级;气体流速115~575 cm3/min(标况)时,晶粒尺寸减小至纳米级。Raman光谱检测显示:约束式沉积所得薄膜总体质量较好,但随气体流速增大而逐渐降低。   相似文献   

18.
CVD金刚石膜的钎焊界面反应层及微结构   总被引:1,自引:0,他引:1       下载免费PDF全文
孙凤莲  赵密  李丹  谷丰 《焊接学报》2006,27(9):70-72
借助扫描电镜和电子探针,分析了金刚石与Ag-Cu-Ti活性钎料界面反应层的微观组织结构、界面新生化合物的形成机理以及焊接工艺条件对界面结构的影响,建立了钎焊接头界面结构物理模型.结果表明,在一定的钎焊工艺条件下,金刚石/钎料界面存在灰色的新生化合物TiC,与TiC相邻的是蜂窝状的TiCu相;接头断裂不仅仅发生在TiC相中,有时断裂也发生在TiCu层.钎焊加热温度、保温时间、钎料层的含Ti量对CVD金刚石厚膜与硬质合金的接头结构模型有重要影响.  相似文献   

19.
20.
Fracture in CVD diamond   总被引:1,自引:0,他引:1  
The fracture behaviour of thick, textured films of chemical-vapour-deposited diamond is discussed with particular emphasis on the influences asserted by the polycrystalline microstructure. Cracking is investigated on two different scales, firstly where it is large in that it traverses many grains and pertains to the fracture of the bulk. The second is where the fractures are localised, resulting from repeated small particle impacts and the mechanisms of material removal at the grain-size-scale are elucidated. The behaviour at this smaller level can be rationalised in terms intermediate to bulk fracture and that observed in single crystal diamond. The effects of grain size, grain boundaries, crystallographic orientation, twinning, internal stresses and pre-existing flaws are discussed. A new value for the fracture toughness is calculated and the gravimetric erosion rate for different surface orientations measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号