共查询到20条相似文献,搜索用时 0 毫秒
1.
PSTPIP: a tyrosine phosphorylated cleavage furrow-associated protein that is a substrate for a PEST tyrosine phosphatase 总被引:1,自引:0,他引:1
S Spencer D Dowbenko J Cheng W Li J Brush S Utzig V Simanis LA Lasky 《Canadian Metallurgical Quarterly》1997,138(4):845-860
We have investigated proteins which interact with the PEST-type protein tyrosine phosphatase, PTP hematopoietic stem cell fraction (HSCF), using the yeast two-hybrid system. This resulted in the identification of proline, serine, threonine phosphatase interacting protein (PSTPIP), a novel member of the actin- associated protein family that is homologous to Schizosaccharomyces pombe CDC15p, a phosphorylated protein involved with the assembly of the actin ring in the cytokinetic cleavage furrow. The binding of PTP HSCF to PSTPIP was induced by a novel interaction between the putative coiled-coil region of PSTPIP and the COOH-terminal, proline-rich region of the phosphatase. PSTPIP is tyrosine phosphorylated both endogenously and in v-Src transfected COS cells, and cotransfection of dominant-negative PTP HSCF results in hyperphosphorylation of PSTPIP. This dominant-negative effect is dependent upon the inclusion of the COOH-terminal, proline-rich PSTPIP-binding region of the phosphatase. Confocal microscopy analysis of endogenous PSTPIP revealed colocalization with the cortical actin cytoskeleton, lamellipodia, and actin-rich cytokinetic cleavage furrow. Overexpression of PSTPIP in 3T3 cells resulted in the formation of extended filopodia, consistent with a role for this protein in actin reorganization. Finally, overexpression of mammalian PSTPIP in exponentially growing S. pombe results in a dominant-negative inhibition of cytokinesis. PSTPIP is therefore a novel actin-associated protein, potentially involved with cytokinesis, whose tyrosine phosphorylation is regulated by PTP HSCF. 相似文献
2.
We have identified and characterized a 9S protein complex from a Xenopus ovary cytosolic subfraction (fraction A) that constitutes this fraction's activity in recognizing a model nuclear import substrate and docking it at the nuclear pore complex. Because of its function, the complex is termed karyopherin. The 54- and 56-kDa subunits of the complex are termed alpha 1 and alpha 2, respectively, and the 97-kDa subunit is termed beta. In an alternative approach we have identified karyopherin beta from a rat liver cytosolic subfraction A by using immobilized rat nucleoporin Nup98 in a single, affinity-based enrichment step. We have molecularly cloned and sequenced rat karyopherin beta. Comparison with protein sequence data banks showed no significant similarity to other known proteins. Using nitrocellulose-immobilized rat liver nuclear envelope proteins and nuclear import substrate as a ligand, we found Xenopus fraction A-dependent binding to at least three bona fide nucleoporins (Nup214, Nup153, and Nup98) and to a candidate nucleoporin with an estimated molecular mass of 270 kDa. We propose that these nucleoporins function as docking proteins for karyopherin-mediated binding of substrate in a nuclear import/export pathway across the nuclear pore complex. 相似文献
3.
The incremental elastic modulus of the common carotid and radial arteries is increased in patients with end-stage renal disease (ESRD), independently of blood pressure, wall stress, and the presence of atherosclerotic alterations. Whether biochemical factors may be involved in the arterial changes and related to renal dysfunction remain largely ignored. To assess this question, we measured aortic (carotid-femoral), upper-limb (carotid-radial), and lower-limb (femoral-tibial) pulse wave velocity (PWV) in 74 ESRD patients undergoing hemodialysis in comparison with 57 control subjects similar in age, sex ratio, and mean blood pressure. We evaluated arterial blood pressure by sphygmomanometry, aortic calcifications and cardiac mass by echography, and routine biochemical parameters, total plasma homocysteine, and plasma endothelin levels by standard techniques. In the population of patients with ESRD, on the basis of multiple stepwise regression analysis, aortic PWV was positively and independently correlated with systolic blood pressure (P<.0001), age (P<.0001), prevalence of aortic calcification (P=.0004), and the prevalence of diabetes mellitus (P=.0043). Upper-limb PWV was influenced exclusively by mean blood pressure (P<.0001). Lower-limb PWV was positively and independently correlated with plasma total homocysteine (P=.0004) and plasma endothelin (P=.0187) only. At any vascular site, PWV was not independently correlated with tobacco consumption; plasma levels of cholesterol, triglyceride, fibrinogen, or hemoglobin; body mass index; or the presence of bilateral nephrectomy. Finally, plasma homocysteine was independently correlated with cardiac mass (P=.0022). This study provides evidence that in ESRD patients, the stiffness of the arterial wall and cardiac mass are strongly influenced by biochemical factors related to the kidney alterations and are independent of age and blood pressure level. Increased plasma endothelin and homocysteine may be specifically involved in the vascular damage of lower limbs. 相似文献
4.
5.
The mitogen-activated kinase activating death domain protein (MADD) that is differentially expressed in neoplastic vs. normal cells (DENN) was identified as a substrate for c-Jun N-terminal kinase 3, the first demonstration of such an activity for this stress-activated kinase that is predominantly expressed in the brain. A splice isoform was identified that is a variant of MADD. A protein identical to MADD has been reported to be expressed differentially in neoplastic vs. normal cells and is termed "DENN." We demonstrated differential effects on DENN/MADD in a stressed vs. basal environment. Using in situ hybridization, we localized both the substrate and the kinase to large pyramidal neurons in the human hippocampus. It was interesting that, in four of four patients with neuropathologically confirmed acute hypoxic changes, we detected a unique translocation of DENN/MADD to the nucleolus. These changes were apparent only in neurons sensitive to hypoxia. Moreover, in those cells, translocation of the substrate was accompanied by nuclear translocation of JNK3. These findings place DENN/MADD and JNK in important hypoxia insult-induced intracellular signaling pathways. Our conclusions are important for future studies for understanding these stress-activated mechanisms. 相似文献
6.
B Wang T Mysliwiec D Krainc RA Jensen G Sonoda JR Testa EA Golemis GD Kruh 《Canadian Metallurgical Quarterly》1996,12(9):1921-1929
Cardiac fibroblasts constitute greater than 90% of the non-myocyte cells in the heart. Previously, it was established that cardiac fibroblasts are predisposed to transformation into a phenotype with muscle-specific features and that transforming growth factor-beta 1 (TGF-beta 1) is a specific inducer of this event. In this study the hypothesis that TGF-beta 1-induced phenotypic modulation of cardiac fibroblasts is associated with their altered proliferative capacity is tested. Therefore the effects of TGF-beta 1 on DNA synthesis in cardiac fibroblasts under normal conditions of cell culture and in response to a potent mitogen, basic fibroblasts growth factor (bFGF) were determined. The results showed that TGF-beta 1 at 15 ng/ml (a concentration that induces fibroblast "transformation") had a regulatory effect on proliferative capacity of cardiac fibroblasts which varied as the function of cell density in culture. In subconfluent and confluent cultures, pre-treatment of cardiac fibroblasts with TGF-beta 1 for 24 h resulted in a dramatic shift in the bFGF-induced stimulation of DNA synthesis. TGF-beta 1-induced inhibition of DNA synthesis in cardiac fibroblasts coincided with their phenotypic modulation as evidenced by the expression of sarcomeric actin mRNA and morphological changes. Cross-linking studies with [125I]-labeled TGF-beta 1 showed the presence of conventional types I, II and III TGF-beta 1 receptor complexes on cardiac fibroblasts and their binding to TGF-beta 1 under the experimental conditions. In summary, these data indicate that the proliferative capacity of cardiac fibroblasts is controlled by TGF-beta 1. They further suggest that the TGF-beta 1-induced phenotypic modulation of cardiac fibroblasts may be extended to include their altered proliferative capacity. 相似文献
7.
A Kelekar BS Chang JE Harlan SW Fesik CB Thompson 《Canadian Metallurgical Quarterly》1997,17(12):7040-7046
The Bcl-2 related protein Bad is a promoter of apoptosis and has been shown to dimerize with the anti-apoptotic proteins Bcl-2 and Bcl-XL. Overexpression of Bad in murine FL5.12 cells demonstrated that the protein not only could abrogate the protective capacity of coexpressed Bcl-XL but could accelerate the apoptotic response to a death signal when it was expressed in the absence of exogenous Bcl-XL. Using deletion analysis, we have identified the minimal domain in the murine Bad protein that can dimerize with Bcl-xL. A 26-amino-acid peptide within this domain, which showed significant homology to the alpha-helical BH3 domains of related apoptotic proteins like Bak and Bax, was found to be necessary and sufficient to bind Bcl-xL. To determine the role of dimerization in regulating the death-promoting activity of Bad and the death-inhibiting activity of Bcl-xL, mutations within the hydrophobic BH3-binding pocket in Bcl-xL that eliminated the ability of Bcl-xL to form a heterodimer with Bad were tested for the ability to promote cell survival in the presence of Bad. Several of these mutants retained the ability to impart protection against cell death regardless of the level of coexpressed Bad protein. These results suggest that BH3-containing proteins like Bad promote cell death by binding to antiapoptotic members of the Bcl-2 family and thus inhibiting their survival promoting functions. 相似文献
8.
SG Kang JB Jin HL Piao KT Pih HJ Jang JH Lim I Hwang 《Canadian Metallurgical Quarterly》1998,38(3):437-447
Palaeontology provides the only direct record for morphological and genetic change through time and uniquely contributes to systematics in two ways: by providing access to denser taxon sampling than is otherwise possible and by dating divergence times. Claims that ancient DNA has survived millions of years in certain fossils suggested the possibility that palaeontology could contribute directly to molecular systematic studies. Unfortunately, none of the supposed geologically ancient DNA records stands up to detailed scrutiny and fossils therefore contribute primarily through the morphological information they preserve. Denser taxon sampling can improve the accuracy of phylogenetic estimates primarily through allowing better discrimination of homoplasy from homology. This in turn leads to more accurate hypotheses of character transformation. Denser taxon sampling also offers the opportunity for more accurate rooting, since more characters can be polarized by reference to a stem-group taxon than to an extant sister-group taxon. Missing data can be a problem for fossils, but is not crippling. Finally the temporal order of clade appearances in the fossil record can provide ancillary evidence for selecting a working phylogeny from among a number of equally most parsimonious cladograms. 相似文献
9.
S Ottonello G Scita G Mantovani D Cavazzini GL Rossi 《Canadian Metallurgical Quarterly》1993,268(36):27133-27142
Retinol bound to cellular retinol-binding protein (CRBP) was found to be oxidized to retinoic acid by a soluble activity from calf liver. Cytosolic retinoic acid synthesis from retinol-CRBP was strictly dependent on the exogenous supply of either NAD or NADP. NAD-supported reactions carried out in the presence or in the absence of dimethyl sulfoxide yielded apparent Km and Vmax values for the retinol-CRBP complex of 3.5 +/- 0.6 microM, 611 +/- 49 pmol h-1 (mg of protein)-1, and 0.84 +/- 0.12 microM, 601 +/- 38 pmol h-1 (mg of protein)-1, respectively. The corresponding values for the oxidation of free retinol, dissolved in dimethyl sulfoxide, were 7.1 +/- 0.3 microM and 948 +/- 47 pmol h-1 (mg of protein)-1. Since the dissociation constant of the bovine retinol-CRBP complex is less than 10(-8) M, whereas the Km for retinol-CRBP is of the same order as the Km for free retinol, synthesis of retinoic acid from retinol-CRBP does not rely on prior dissociation of retinol. ApoCRBP proved to be a specific inhibitor of retinoic acid synthesis from CRBP-bound retinol. Its inhibitory effect was indistinguishable from the dilution of the radioactive retinol-CRBP substrate that was obtained by the addition of unlabeled holoCRBP. In contrast, the oxidation of CRBP-bound retinol was not inhibited by the addition of other retinoid binding proteins nor by the addition of either free retinol or retinol complexed with proteins distinct from CRBP. These results indicate that the protein moiety of holoCRBP is specifically recognized by the cytosolic enzyme system that catalyzes retinoic acid synthesis from CRBP-bound retinol. 相似文献
10.
C Chapline J Cottom H Tobin J Hulmes J Crabb S Jaken 《Canadian Metallurgical Quarterly》1998,273(31):19482-19489
Protein kinase C (PKC) plays a major role in regulating cell growth, transformation, and gene expression; however, identifying phosphorylation events that mediate these responses has been difficult. We expression-cloned a group of PKC-binding proteins and identified a high molecular weight, heat-soluble protein as the major PKC-binding protein in REF52 fibroblasts (Chapline, C., Mousseau, B., Ramsay, K., Duddy, S., Li, Y., Kiley, S. C., and Jaken, S. (1996) J. Biol. Chem. 271, 6417-6422). In this study, we demonstrate that this PKC-binding protein, clone 72, is also a PKC substrate in vitro and in vivo. Using a combination of phosphopeptide mapping, Edman degradation, and electrospray mass spectrometry, serine residues 283, 300, 507, and 515 were identified as the major in vitro PKC phosphorylation sites in clone 72. Phosphorylation state-selective antibodies were raised against phosphopeptides encompassing each of the four phosphorylation sites. These antibodies were used to determine that phorbol esters stimulate phosphorylation of serines 283, 300, 507, and 515 in cultured cells, indicating that clone 72 is directly phosphorylated by PKC in living cells. Phosphorylated clone 72 preferentially accumulates in membrane protrusions and ruffles, indicating that PKC activation and clone 72 phosphorylation are involved in membrane-cytoskeleton remodeling. These data lend further evidence to the model that PKCs directly interact with, phosphorylate, and modify the functions of a group of substrate proteins, STICKs (substrates that interact with C-kinase). 相似文献
11.
FA Norris MP Wilson TS Wallis EE Galyov PW Majerus 《Canadian Metallurgical Quarterly》1998,95(24):14057-14059
Several proteins secreted by enteric bacteria are thought to contribute to virulence by disturbing the signal transduction of infected cells. Here, we report that SopB, a protein secreted by Salmonella dublin, has sequence homology to mammalian inositol polyphosphate 4-phosphatases and that recombinant SopB has inositol phosphate phosphatase activity in vitro. SopB hydrolyzes phosphatidylinositol 3,4,5-trisphosphate, an inhibitor of Ca2+-dependent chloride secretion. In addition, SopB hydrolyzes inositol 1,3,4,5,6 pentakisphosphate to yield inositol 1,4,5, 6-tetrakisphosphate, a signaling molecule that increases chloride secretion indirectly by antagonizing the inhibition of chloride secretion by phosphatidylinositol 3,4,5-trisphosphate [Eckmann, L., Rudolf, M. T., Ptasznik, A., Schultz, C., Jiang, T., Wolfson, N., Tsien, R., Fierer, J., Shears, S. B., Kagnoff, M. F., et al. (1997) Proc. Natl. Acad. Sci. USA 94, 14456-14460]. Mutation of a conserved cysteine that abolishes phosphatase activity of SopB results in a mutant strain, S. dublin SB c/s, with decreased ability to induce fluid secretion in infected calf intestine loops. Moreover, HeLa cells infected with S. dublin SB c/s do not accumulate high levels of inositol 1,4,5,6-tetrakisphosphate that are characteristic of wild-type S. dublin-infected cells. Therefore, SopB mediates virulence by interdicting inositol phosphate signaling pathways. 相似文献
12.
S Poli-Scaife R Attias PM Dansette D Mansuy 《Canadian Metallurgical Quarterly》1997,36(42):12672-12682
Purified recombinant human liver cytochrome P450 2C9 was produced, from expression of the corresponding cDNA in yeast, in quantities large enough for UV-visible and 1H NMR experiments. Its interaction with several substrates (tienilic acid and two derivatives, lauric acid and diclofenac) and with a specific inhibitor, sulfaphenazole, was studied by UV-visible and 1H NMR spectroscopy. At 27 degrees C, all those substrates led to an almost complete conversion of CYP 2C9 to high-spin (S = 5/2) CYP 2C9-substrate complexes characterized by a Soret peak at 390 nm; their KD values varied between 1 and 42 microM. On the contrary, sulfaphenazole led to a low-spin (S = 1/2) CYP 2C9 complex upon binding of its NH2 group to CYP 2C9 iron. Interactions of the five substrates with the enzyme were studied by paramagnetic relaxation effects of CYP 2C9-iron(III) on the 1H NMR spectrum of each substrate. Distances between the heme iron atom and substrate protons were calculated from the NMR data, and the orientation of the substrate relative to iron was determined from those distances. Finally, a model for substrate positioning in the CYP 2C9 active site was constructed by molecular modeling studies under the constraint of the iron-proton distances. It points out two structural characteristics for a compound to be selectively recognized by CYP 2C9: (i) the presence of an anionic site able to establish an ionic bond with a putative cationic residue of the protein and (ii) the presence of an hydrophobic zone between the substrate hydroxylation site and the anionic site. Sulfaphenazole was easily included in that model; its very high affinity for CYP 2C9 is due to a third structural feature, the presence of its NH2 function which binds to CYP 2C9 iron. 相似文献
13.
Comprehensive kinetic studies were carried out on the unfolding properties of RM6 as a function of GdnHCl concentration and temperature. This protein is a mutant resulting from the dimeric wild-type CoLE1-ROP protein by deletion of 5 amino acids (Asp 30, Ala 31, Asp 32, Glu 33, Gln 34) in the loop of each monomer. The deletion has dramatic consequences. The dimeric 4-alpha-helix structure characteristic of the wild-type protein is completely reorganized and the RM6 structure can be described as a tetrameric alpha helix of extended monomers without loops. These extraordinary structural changes are accompanied by an enormous increase in transition temperature from 71 to 101 degreesC. These features have been discussed in a separate publication (1). The remarkable change in thermal stability of RM6 should be reflected in significant changes in the folding rate constants. This was observed in the present unfolding studies. Decay of tetrameric RM6 was monitored by circular dichroism (CD) and fluorescence to probe for changes in both secondary and tertiary structure, respectively. The identity of the kinetic parameters obtained from the two techniques supports the view that secondary and tertiary structure break down simultaneously. However, the most intriguing result is the finding that unfolding of tetrameric RM6 can be described very well by a second-order reaction. The magnitude of the second-order rate constant k2 varies dramatically with both temperature and denaturant concentration. At 25 degreesC and 6.5 M GdnHCl concentration k2 is 4200 L.(mol of dimer)-1.s-1, whereas at 4.4 M GdnHCl a value of k2 = 0.9 L.(mol of dimer)-1.s-1 is observed. Correspondingly, apparent activation enthalpies show a strong increase from DeltaH# = 29.1 kJ.mol-1 at 6. 5 M GdnHCl to Delta H# = 79.7 kJ.mol-1 at 4.4 M GdnHCl. A mechanism involving a dimeric intermediate is suggested which permits a consistent interpretation of the findings. 相似文献
14.
Y Langelier L Champoux M Hamel C Guilbault N Lamarche P Gaudreau B Massie 《Canadian Metallurgical Quarterly》1998,273(3):1435-1443
The N terminus of the R1 subunit of herpes simplex virus type 2 ribonucleotide reductase is believed to be a protein kinase domain mainly because the R1 protein was phosphorylated in a protein kinase assay on blot. Using Escherichia coli and adenovirus expression vectors to produce R1, we found that, whereas the reductase activity of both recombinant proteins was similar, efficient phosphorylation of R1 and casein in the presence of Mg2+ was obtained only with the R1 purified from eukaryotic cells. Phosphorylation of this R1, in solution or on blot, results mainly from the activity of casein kinase II (CKII), a co-purifying protein kinase. Labeling on blot occurs from CKII leakage off the membrane and its subsequent high affinity binding to in vivo CKII-phosphorylated R1. CKII target sites were mapped to an acidic serine-rich segment of the R1 N terminus. Improvement in purification of the R1 expressed in eukaryotic cells nearly completely abolished its phosphorylation potential. An extremely low level of phosphorylation observed in the presence of Mn2+ with the R1 produced in E. coli was probably due to an unidentified prokaryotic protein kinase. These results provide evidence that the herpes simplex virus type 2 R1 does not possess an intrinsic protein kinase activity. 相似文献
15.
Mammalian ADP-ribosylation is poorly understood. An ADP-ribosylprotein hydrolase that acted on ADP-ribosylated actin was purified from rat brain. The molecular weight of this enzyme was 62, 000 as determined by SDS-polyacrylamide gel electrophoresis and gel filtration. Enzyme activity with ADP-ribosylated actin as a substrate was inhibited by NAD, ATP, ADP, and ADP-ribose, but not by AMP. Mg2+ increased Vmax. Purified ADP-ribosylactin hydrolase catalyzed the hydrolysis of ADP-ribosylated subunits Gsalpha, Gialpha, and Goalpha and elongation factor-2. After de-ADP-ribosylation by the purified ADP-ribosylactin hydrolase, the proteins were re-ADP-ribosylated by brain mono-ADP-ribosyltransferases and bacterial toxins. The actin that was de-modified by ADP-ribosylactin hydrolase could form actin filaments. Two kinds of monoclonal antibodies against ADP-ribosylactin hydrolase were prepared and characterized. In an immunohistochemical study, the plasma membranes and cytoplasmic regions of the nerve cells in the rat brain were immunoreactive. In subcellular fractionation of the brains, most of the ADP-ribosylactin hydrolase activity was found in the cytosol and synaptosome fractions. When the synaptosomes were treated with a hypotonic solution, ADP-ribosylactin hydrolase activity was found in the supernatant. Our findings suggest that brain ADP-ribosylactin hydrolase has the important function of polymerizing actin for signal transduction in the cytosol of nerve cells and synaptosomes. 相似文献
16.
In lysosomes isolated from rat liver and spleen, a percentage of the intracellular inhibitor of the nuclear factor kappa B (IkappaB) can be detected in the lysosomal matrix where it is rapidly degraded. Levels of IkappaB are significantly higher in a lysosomal subpopulation that is active in the direct uptake of specific cytosolic proteins. IkappaB is directly transported into isolated lysosomes in a process that requires binding of IkappaB to the heat shock protein of 73 kDa (hsc73), the cytosolic molecular chaperone involved in this pathway, and to the lysosomal glycoprotein of 96 kDa (lgp96), the receptor protein in the lysosomal membrane. Other substrates for this degradation pathway competitively inhibit IkappaB uptake by lysosomes. Ubiquitination and phosphorylation of IkappaB are not required for its targeting to lysosomes. The lysosomal degradation of IkappaB is activated under conditions of nutrient deprivation. Thus, the half-life of a long-lived pool of IkappaB is 4.4 d in serum-supplemented Chinese hamster ovary cells but only 0.9 d in serum-deprived Chinese hamster ovary cells. This increase in IkappaB degradation can be completely blocked by lysosomal inhibitors. In Chinese hamster ovary cells exhibiting an increased activity of the hsc73-mediated lysosomal degradation pathway due to overexpression of lamp2, the human form of lgp96, the degradation of IkappaB is increased. There are both short- and long-lived pools of IkappaB, and it is the long-lived pool that is subjected to the selective lysosomal degradation pathway. In the presence of antioxidants, the half-life of the long-lived pool of IkappaB is significantly increased. Thus, the production of intracellular reactive oxygen species during serum starvation may be one of the mechanisms mediating IkappaB degradation in lysosomes. This selective pathway of lysosomal degradation of IkappaB is physiologically important since prolonged serum deprivation results in an increase in the nuclear activity of nuclear factor kappa B. In addition, the response of nuclear factor kappa B to several stimuli increases when this lysosomal pathway of proteolysis is activated. 相似文献
17.
C Widmann P Gerwins NL Johnson MB Jarpe GL Johnson 《Canadian Metallurgical Quarterly》1998,18(4):2416-2429
MEK kinase 1 (MEKK1) is a 196-kDa protein that, in response to genotoxic agents, was found to undergo phosphorylation-dependent activation. The expression of kinase-inactive MEKK1 inhibited genotoxin-induced apoptosis. Following activation by genotoxins, MEKK1 was cleaved in a caspase-dependent manner into an active 91-kDa kinase fragment. Expression of MEKK1 stimulated DEVD-directed caspase activity and induced apoptosis. MEKK1 is itself a substrate for CPP32 (caspase-3). A mutant MEKK1 that is resistant to caspase cleavage was impaired in its ability to induce apoptosis. These findings demonstrate that MEKK1 contributes to the apoptotic response to genotoxins. The regulation of MEKK1 by genotoxins involves its activation, which may be part of survival pathways, followed by its cleavage, which generates a proapoptotic kinase fragment able to activate caspases. MEKK1 and caspases are predicted to be part of an amplification loop to increase caspase activity during apoptosis. 相似文献
18.
19.