首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ricin A-chain (RTA) catalyzes the depurination of a single adenine at position 4324 of 28S rRNA in a N-ribohydrolase reaction. The mechanism and specificity for RTA are examined using RNA stem-loop structures of 10-18 nucleotides which contain the required substrate motif, a GAGA tetraloop. At the optimal pH near 4.0, the preferred substrate is a 14-base stem-loop RNA which is hydrolyzed at 219 min-1 with a kcat/Km of 4.5 x 10(5) M-1 s-1 under conditions of steady-state catalysis. Smaller or larger stem-loop RNAs have lower kcat values, but all have Km values of approximately 5 microM. Both the 10- and 18-base substrates have kcat/Km near 10(4) M-1 s-1. Covalent cross-linking of the stem has a small effect on the kinetic parameters. Stem-loop DNA (10 bases) of the same sequence is also a substrate with a kcat/Km of 0.1 that for RNA. Chemical mechanisms for enzymatic RNA depurination reactions include leaving group activation, stabilization of a ribooxocarbenium transition state, a covalent enzyme-ribosyl intermediate, and ionization of the 2'-hydroxyl. A stem-loop RNA with p-nitrophenyl O-riboside at the depurination site is not a substrate, but binds tightly to the enzyme (Ki = 0.34 microM), consistent with a catalytic mechanism of leaving group activation. The substrate activity of stem-loop DNA eliminates ionization of the 2'-hydroxyl as a mechanism. Incorporation of the C-riboside formycin A at the depurination site provides an increased pKa of the adenine analogue at N7. Binding of this analogue (Ki = 9.4 microM) is weaker than substrate which indicates that the altered pKa at this position is not an important feature of transition state recognition. Stem-loop RNA with phenyliminoribitol at the depurination site increases the affinity substantially (Ki = 0.18 microM). The results are consistent with catalysis occurring by leaving group protonation at ring position(s) other than N7 leading to a ribooxocarbenium ion transition state. Small stem-loop RNAs have been identified with substrate activity within an order of magnitude of that reported for intact ribosomes.  相似文献   

2.
The substrate recognition and catalytic mechanisms of alpha-sarcin were explored with kinetic method by using synthetic 25-mer RNA mimicking the alpha-sarcin/ricin loop in 23S rRNA of E. coli ribosomes. The oligomer containing deoxy-G at the site of alpha-sarcin (G14) was a potent competitive inhibitor. The RNA having deoxy-G8 however, increases the Kcat value by about five times but without significant alteration on Km. Surprisingly, the deletion of G8 makes the oligomer become a strong noncompetitive inhibitor of the enzyme. These results suggested that there are at least two sites in the RNA substrate which are recognized by alpha-sarcin, one is the G8 bulge or at around its neighbor and the other is the GAGA in the sarcin/ricin loop of the rRNA.  相似文献   

3.
The sarcin/ricin domain in 23 S/28 S rRNA is crucial for ribosome function, since it constitutes at least part of the binding site for the elongation factors and hence is essential for binding aminoacyl-tRNA and for translocation. The domain is also the site of action of ricin and sarcin and analysis of the effect of mutations in the RNA on recognition by the cytotoxins has helped to define the structure and to understand the function of the region. We have constructed deletions, separately, of pairs of non-conserved, juxtaposed but non-hydrogen-bonded nucleotides that correspond to C4317 and C4331, and to U4316 and C4332, in an oligoribonucleotide that mimics the sarcin/ricin domain in rat 28 S rRNA. The deletions had no effect on the depurination of A4324 by ricin nor on the cleavage of the phosphodiester bond on the 3' side of G4325 by sarcin. However, simultaneous deletion of the four nucleotides decreased cleavage by sarcin but did not affect depurination by ricin. Removal of the non-canonical A4318.A4330 pair abolished recognition by both toxins. Deletion from oligoribonucleotides, that reproduce the sarcin/ricin domain of Escherichia coli 23 S rRNA, of U2653 and C2667 (equivalent to U4316, C4317 and C4331, C4332 in 28 S rRNA), or substitution of guanosine for U2653 (designed to form a Watson-Crick G2653.C2667 pair), reduced cleavage by sarcin whereas depurination by ricin was slightly increased. An increase in the stability of the mutant oligoribonucleotides may be the basis of the impairment in sarcin action. The tm for the wild-type RNA is 60 degreesC; for the double-deletion mutant U2653Delta/C2667Delta it is 65 degreesC; and for the U2653G transversion it is 69 degreesC. Expression of a mutant 23 S rRNA gene lacking U2653 and C2667 is lethal and a U2653G transversion mutation impairs growth. The mutant ribosomes are less active in protein synthesis than the wild-type and ribosomes with the U2653G mutation are resistant to sarcin. The binding of EF-G to oligoribonucleotides with a U2653/C2667 double deletion is reduced and an effect on the affinity of the factor for the sarcin/ricin domain may account in part for the decrease in ribosome efficiency. The results stress the potential importance in rRNA structure and function of non-conserved nucleotides, and suggest that the sarcin/ricin domain in ribosomes requires a region of structural flexibility for optimal efficiency.  相似文献   

4.
Ricin is a member of the ribosome-inactivating protein (RIP) family with RNA-N-glycosidase activity which inactivates eukaryotic ribosomes by specifically removing adenine from the first adenosine of a highly conserved GAGA loop present in 28S rRNA. Free adenine protects ribosomes in cell-free systems from inactivation by ricin. Protection by adenine is highly specific, since AMP, adenosine and modified adenines (1-methyladenine and ethenoadenine) were completely ineffective. Kinetic analysis of the behaviour of adenine as inhibitor of the RNA-N-glycosidase reaction catalysed by ricin, Shiga-like toxin I and momordin, two other members of the RIP family, established that inhibition was of the uncompetitive type, the inhibitor binding to the enzyme-substrate complex. Adenine did not protect ribosomes from alpha-sarcin, an RNAase that inactivates ribosomes by cleaving the phosphodiester bond located in the GAGA loop at one nucleotide distance from the adenosine depurinated by the RNA-N-glycosidases. Adenine at the concentration of 1 mM lowered 1.5-fold the toxicity of ricin and 3.7-fold that of Shiga-like toxin I on Vero cells in culture. The same concentration of adenine decreased 2.4-fold the inactivation of isolated ribosomes by ricin, 2.8-fold the inactivation by Shiga-like toxin I and 20-fold that by momordin.  相似文献   

5.
Ribosomal function in protein synthesis requires dynamic flexibility of the ribosomal structure. The two translational inhibitors derived from seeds of ricin and barley destroy the dynamic properties of the ribosome by selective depurination of A4256 in the phylogenetically conserved alpha-sarcin/ricin loop of mouse 28 S rRNA. As the alpha-sarcin/ricin loop is involved in binding of elongation factors to the ribosome, depurination blocks the protein synthesis elongation cycle. Depurination by the barley translational inhibitor (BTI) mainly effects eEF-1 alpha related functions, while ricin interferes with the interaction of eEF-2 with the ribosome. Analysis of the ribosomal structure after inhibitor shows that the accessibility of the rRNAs for single-strand-specific chemical modification was altered. Reactivity changes were seen in domains I, II and V of 28 S rRNA and in 5 S rRNA. A majority of the reactivity changes were found in putative functional regions of the rRNAs, such as the regions involved in peptidyltransferase activity, subunit interaction and in the binding of elongation factors. Most of the observed structural changes made the rRNAs less accessible for chemical modification, suggesting that the ribosomal particles became less flexible after inhibitor treatment. Moreover, the modification patterns obtained from the two inhibitor-treated ribosomal particles were only partly overlapping, indicating that the structure of the large ribosomal subunit differed after ricin and BTI treatment. Surprisingly, depurination in the alpha-sarcin/ricin loop of 28 S rRNA also affected the structure of the 3' major domain in 18 S rRNA.  相似文献   

6.
The L-21 ScaI ribozyme catalyzes sequence-specific cleavage of an oligonucleotide substrate. Cleavage is preceded by base pairing of the substrate to the internal guide sequence (IGS) at the 5' end of the ribozyme to form a short RNA duplex (P1). Tertiary interactions between P1 and the catalytic core dock P1 into the active site of the ribozyme. These include interactions between the catalytic core and 2'-hydroxyls of the substrate at nucleotide positions -3u and perhaps -2c. In this study, 2'-hydroxyls of the IGS strand that contribute to P1 recognition by the ribozyme are identified. IGS 2'-hydroxyls (nucleotide positions 22-27) were individually modified to either 2'-deoxy or 2'-methoxynucleotides within full-length semisynthetic L-21 ScaI ribozymes generated using T4 DNA ligase. Thermodynamic and kinetic characterization of the resulting IGS variant ribozymes justify the following conclusions: (i) 2'-Hydroxyls at nucleotide positions G22 and G25 play a critical energetic role in docking P1 into the catalytic core, contributing 2.6 and 2.1 kcal.mol-1, respectively. (ii) The loss of binding energy is manifest primarily as an increase in the rate of dissociation. Because turnover for the wild-type ribozyme is limited by product dissociation, G22 and G25 deoxy variants display up to a 20-fold increase in the multiple-turnover rate at saturating substrate. (iii) IGS tertiary interactions are energetically coupled with the tertiary interactions made to the substrate, consistent with P1 becoming undocked from its binding site in J8/7 upon substitution of either the G22 or G25 2'-hydroxyl. (iv) The G22 deoxy variant loses energetic coupling between guanosine and substrate binding, suggesting that in this variant the P1 helix is also undocked from its binding site in J4/5, the proposed site of guanosine and substrate interaction. Therefore, in combinations with previous studies four P1 2'-hydroxyls are implicated as important for docking. The contributions of the 2'-hydroxyl tertiary interactions are not equivalent and follow the hierarchical order G22 > G25 > -3u > -2c. Because the G22 2'-hydroxyl appears to mediate P1 docking into both J8/7 and J4/5, it may serve as the molecular linchpin for the recognition of P1 by the catalytic core.  相似文献   

7.
We report on a combined NMR-molecular dynamics calculation approach that has solved the solution structure of the complex of flavin mononucleotide (FMN) bound to the conserved internal loop segment of a 35 nucleotide RNA aptamer identified through in vitro selection. The FMN-RNA aptamer complex exhibits exceptionally well-resolved NMR spectra that have been assigned following application of two, three and four-dimensional heteronuclear NMR techniques on samples containing uniformly 13C, 15N-labeled RNA aptamer in the complex. The assignments were aided by a new through-bond NMR technique for assignment of guanine imino and adenine amino protons in RNA loop segments. The conserved internal loop zippers up through the formation of base-pair mismatches and a base-triple on complex formation with the isoalloxazine ring of FMN intercalating into the helix between a G.G mismatch and a G.U.A base-triple. The recognition specificity is associated with hydrogen bonding of the uracil like edge of the isoalloxazine ring of FMN to the Hoogsteen edge of an adenine at the intercalation site. There is significant overlap between the intercalated isoalloxazine ring and its adjacent base-triple platform in the complex. The remaining conserved residues in the internal loop participate in two G.A mismatches in the complex. The zippered-up internal loop and flanking stem regions form a continuous helix with a regular sugar-phosphate backbone except at a non-conserved adenine, which loops out of the helix to facilitate base-triple formation. Our solution structure of the FMN-RNA aptamer complex is to our knowledge the first structure of an RNA aptamer complex and outlines folding principles that are common to other RNA internal and hairpin loops, and molecular recognition principles common to model self-replication systems in chemical biology.  相似文献   

8.
The GAAA tetraloop receptor is an 11-nucleotide RNA sequence that participates in the tertiary folding of a variety of large catalytic RNAs by providing a specific binding site for GAAA tetraloops. Here we report the solution structure of the isolated tetraloop receptor as solved by multidimensional, heteronuclear magnetic resonance spectroscopy. The internal loop of the tetraloop receptor has three adenosines stacked in a cross-strand or zipper-like fashion. This arrangement produces a high degree of base stacking within the asymmetric internal loop without extrahelical bases or kinking the helix. Additional interactions within the internal loop include a U. U mismatch pair and a G.U wobble pair. A comparison with the crystal structure of the receptor RNA bound to its tetraloop shows that a conformational change has to occur upon tetraloop binding, which is in good agreement with previous biochemical data. A model for an alternative binding site within the receptor is proposed based on the NMR structure, phylogenetic data and previous crystallographic structures of tetraloop interactions.  相似文献   

9.
A protein-synthesis inhibitor, designated RPSI, was isolated from the seeds of rye (Secale cereale) using gel filtration and S-Sepharose column chromatography. RPSI is a basic protein with an isoelectric point of over 10, and the concentration of protein required for 50% inhibition of protein synthesis (IC50) of purified RPSI was about ten-fold the concentration of ricin A-chain. The complete amino acid sequence of RPSI was discovered by analyzing the peptides and fragments obtained from the proteolytic digests and by the cyanogen bromide- and hydroxylamine-cleavages of RPSI. RPSI consists of 280 amino acid residues and has a molecular weight of 30,171. RPSI has only 21% sequence identity with that of ricin A-chain, but all five amino acid residues involved in the active site of ricin A-chain are conserved in RPSI.  相似文献   

10.
BACKGROUND: Group II introns are self-splicing RNAs that have mechanistic similarity to the spliceosome complex involved in messenger RNA splicing in eukaryotes. These autocatalytic molecules can be reconfigured into highly specific, multiple-turnover ribozymes that cleave oligonucleotides in trans. We set out to use a simplified system of this kind to study the mechanism of cleavage. RESULTS: Unlike other catalytic RNA molecules, the group II ribozymes cleave DNA linkages almost as readily as RNA linkages. One ribozyme variant cleaves DNA linkages with an efficiency comparable to that of restriction endonuclease EcoRI. Single deoxynucleotide substitutions in the substrate showed that the ribozymes bind substrate without engaging 2'-hydroxyl groups. CONCLUSIONS: The ribose 2'-hydroxyl group at the cleavage site has little role in transition-state stabilization by group II ribozymes. Substrate 2'-hydroxyl groups are not involved in substrate binding, suggesting that only base-pairing is required for substrate recognition.  相似文献   

11.
Structure of human des(1-45) factor Xa at 2.2 A resolution   总被引:11,自引:0,他引:11  
The structure of a large molecular fragment of factor Xa that lacks only a Gla (gamma-carboxyglutamic acid) domain (N-terminal 45 residues) has been solved by X-ray crystallography and refined at 2.2 A resolution to a crystallographic R-value of 0.168. The fragment identity was clearly established by automated Edman degradation. X-ray structure analysis confirmed the biochemical characterization and also revealed that the N-terminal epidermal growth factor (EGF)-like domain is flexibly disordered in crystals. The second EGF module, however, is positionally ordered making contacts with the catalytic domain. The overall folding of the catalytic domain is similar to that of alpha-thrombin, excluding the insertion loops of the latter with respect to simpler serine proteinases. The C-terminal arginine of the A-chain interacts in a substrate-like manner with the S1 specificity site of the active site of a crystallographically neighboring molecule. Based on this interaction and the structure of D-PheProArg methylene-thrombin, a model of the commonly used dansylGluGlyArg methylene inhibitor-factor Xa interaction is proposed. The region of factor Xa corresponding to the fibrinogen recognition site of thrombin has a reversed electrical polarity to the anion binding fibrinogen recognition site of thrombin but possesses a site similar to the Ca2+ binding site of trypsin and other serine proteinases. The structure of the C-terminal EGF domain of factor Xa is the first to be determined crystallographically. Its folding has been comprehensively compared with similar domains determined by NMR. Although the A-chain makes 44 contacts at less than 3.5 A with the catalytic domain, only 16 involve the EGF module. In addition, the A-chain makes 30 intermolecular contacts with a neighboring catalytic domain.  相似文献   

12.
The mode of action of ribosome-inactivating proteins (RIPs) has, for many years, been considered to be depurination of a specific adenyl residue of ribosomal RNA, resulting in inhibition of protein synthesis. Recently, this view has been challenged by the observation that many RIP preparations have significant DNase activity in addition to their N-glycosidase activity. In this study, we have investigated the putative DNase activity of two RIPs, ricin and pokeweed antiviral protein (PAP), and show that, in both cases, the DNase activity is due to the presence of contaminating nucleases. The N-glycosidase and DNase activities of PAP were separately and specifically inactivated by chemical modification and heat. Gel filtration of ricin allowed physical separation of the two activities. Furthermore, neither recombinant PAP nor recombinant ricin A-chain purified from Escherichia coli displayed DNase activity.  相似文献   

13.
The three-dimensional (3-D) structure of a RNA pseudoknot that causes the efficient ribosomal frameshifting in the gag-pro region of mouse mammary tumor virus (MMTV) has been determined recently by nuclear magnetic resonance (NMR) studies. But since the structure refinement in the studies did not use metal ions and waters, it is not clear how metal ions participate in the stabilization of the pseudoknot, and what kind of ion-RNA interactions dominate in the tertiary contacts for the RNA pseudoknotting. Based on the reported structure data of the pseudoknot VPK of MMTV, we gradually refined the structure by restrained molecular dynamics (MD) using NMR distance restraints. Restrained MD simulation of the RNA pseudoknot was performed with sodium ions and water molecules. Our results are in good agreement with known NMR data and delineate the importance of the metal ion coordination in the stability of the pseudoknot. In the non-coaxially stacking pseudoknot, stem 1 (S1), stem 2 (S2), and the intervening A14 involves unconventional stacking of base pairs coordinated by Na+ and/or bridging water molecules. A6 and G7 of loop L1 make a perfect base stacking in the major groove and are further stabilized by coordinated Na+ ions and water molecules. The first 4-nucleotide (nt) ACUC of loop L2 form a sharp turn and the following 4-nt AAAA cross the minor groove of S1 and are steadied by interactions with the nucleotides of S , bridging water molecules and coordinated Na+ ions. Our studies suggest that the metal ion plays a crucial role in the RNA pseudoknotting of VPK. In the stacking interior of S1 and S2, the Na+ ion is positioned in the major groove and interacts directly with the carbonyl group O6 of G28 and carbonyl group O4 of U13 in the wobble base pair U13:G28. The ion-RNA interactions in MMTV VPK not only stabilize the RNA pseudoknot but also modify the electrostatic properties of the nucleotides at the critical parts of the pseudoknot VPK.  相似文献   

14.
The hammerhead ribozyme is capable of cleaving RNA substrates at 5' UX 3' sequences (where the cleavage site, X, can be A, C, or U). Hammerhead complexes containing dC, dA, dI, or rG nucleotides at the cleavage site have been studied by NMR. The rG at the cleavage site forms a Watson-Crick base pair with C3 in the conserved core of the hammerhead, indicating that rG substrates inhibit the cleavage reaction by stabilizing an inactive conformation of the molecule. Isotope-edited NMR experiments on the hammerhead complexes show that there are different short proton-proton distances between neighboring residues depending upon whether there is a dC or dA at the cleavage site. These NMR data demonstrate that there are significant differences in the structure and/or dynamics of the active-site residues in these hammerhead complexes. Molecular dynamics calculations were used to model the conformations of the cleavage-site variants consistent with the NMR data. The solution conformations of the hammerhead ribozyme-substrate complexes are compared with the X-ray structure of the hammerhead ribozyme and are used to help understand the thermodynamic and kinetic differences among the cleavage-site variants.  相似文献   

15.
Alternative measures of pesticide use   总被引:2,自引:0,他引:2  
tRNA (m5U54)-methyltransferase (RUMT) catalyzes the S-adenosylmethionine-dependent methylation of uridine-54 in the T psi C-loop of all transfer RNAs in E. coli to form the 54-ribosylthymine residue. However, in all tRNA structures, residue 54 is completely buried and the question arises as to how RUMT gains access to the methylation site. A 17-mer RNA hairpin consisting of nucleotides 49-65 of the T psi-loop is a substrate for RUMT. Homonuclear NMR methods in conjunction with restrained molecular dynamics (MD) methods were used to determine the solution structure of the 17-mer T-arm fragment. The loop of the hairpin exhibits enhanced flexibility which renders the conventional NMR average structure less useful compared to the more commonly found situation where a molecule exists in predominantly one major conformation. However, when resorting to softer refinement methods such as MD with time-averaged restraints, the conflicting restraints in the loop can be satisfied much better. The dynamic structure of the T-arm is represented as an ensemble of 10 time-clusters. In all of these, U54 is completely exposed. The flexibility of the T psi-loop in solution in conjunction with extensive binding studies of RUMT with the T psi C-loop and tRNA suggest that the specificity of the RUMT/ tRNA recognition is associated with tRNA tertiary structure elements. For the methylation, RUMT would simply have to break the tertiary interactions between the D- and T-loops, leading to a melting of the T-arm structure and making U54 available for methylation.  相似文献   

16.
Ricin A-chain is delivered into macrophages via receptor-mediated endocytosis. We have found that following uptake via the mannose receptor, ricin A-chain is rapidly cleaved by endosomal proteases. Inhibition of endosomal proteases such as cathepsin D and B leads to the accumulation of toxin inside the cell. Inhibition of cathepsin D reduces ricin A-chain cytotoxicity, while blocking cathepsin B enhances cytotoxicity. Similar results were obtained using fibroblasts transfected with the mannose receptor. Our data strongly suggest that the activation or membrane translocation of ricin A-chain is dependent upon the action of specific proteases.  相似文献   

17.
The structure of pig pancreatic alpha-amylase in complex with carbohydrate inhibitor and proteinaceous inhibitors is known but the successive events occurring at the catalytic center still remain to be elucidated. The X-ray structure analysis of a crystal of pig pancreatic alpha-amylase (PPA, EC 3.2.1.1.) soaked with an enzyme-resistant substrate analogue, methyl 4,4'-dithio-alpha-maltotrioside, showed electron density corresponding to the binding of substrate analogue molecules at the active site and at the "second binding site." The electron density observed at the active site was interpreted in terms of overlapping networks of oligosaccharides, which show binding of substrate analogue molecules at subsites prior to and subsequent to the cleavage site. A weaker patch of density observed at subsite -1 (using a nomenclature where the site of hydrolysis is taken to be between subsites -1 and +1) was modeled with water molecules. Conformational changes take place upon substrate analogue binding and the "flexible loop" that constitutes the surface edge of the active site is observed in a specific conformation. This confirms that this loop plays an important role in the recognition and binding of the ligand. The crystal structure was refined at 2.03 A resolution, to an R-factor of 16.0 (Rfree, 18.5).  相似文献   

18.
Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants whose metabolism in mammals results in deleterious cell transformation. Covalent modification of DNA by diol epoxides metabolically formed from PAHs such a benzo[a]pyrene (BaP) provides a mechanism for the genotoxicity, mutagenicity, and carcinogenicity of PAHs. We had previously reported NMR evidence for a minor conformer of the duplex d(G1G2T3C4A5*C6G7A8G9).d(C10T11C12G13G14G15A16C17C18) containing a dG14 mismatch opposite a dA5* residue modified at the exocyclic amino group by trans addition to (+)-(7R,8S,9S,10R)-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a] pyrene [Yeh, H.J.C., Sayer, J.M., Liu, X., Altieri, A.S., Byrd, R.A., Lashman, M.K., Yagi, H., Schurer, E.J., Gorenstein, D.G., & Jerina, D.M. (1995) Biochemistry 34, 13570-13581]. In the present work, we describe the structure of this minor conformer (ca. 17% of the total conformer population). This represents the first structural determination of a minor conformer of a carcinogen-lesion DNA adduct. Two-dimensional NOESY, ROESY, TOCSY, and exchange-only spectra at 750 MHz allowed nearly complete sequential assignment of both conformers. In the minor conformer, the adducted base assumes an anti-glycosidic torsion angle whereas in the major conformer it assumes an unusual syn-glycosidic torsion angle. The aromatic hydrocarbon in the minor conformer is intercalated between dG13 and dG14, preserving the energetically favorable stacking interactions found in the major conformer. The major structural differences between the two conformers appear to be near the lesion site as evidenced by the large chemical shift differences between major and minor conformer protons near the lesion site; away from this site, the chemical shifts of the major and minor conformer protons are nearly identical. Because any of the conformations of benzo[a]pyrene diol epoxide-modified DNA may contribute to tumorigenic activity, structural determination of all conformations is essential for the elucidation of the mechanism of cell transformation initiated by covalent modification of DNA by PAHs.  相似文献   

19.
The sarcin/ricin domain (SRD) in Escherichia coli 23 S rRNA forms a part of the site for the association of the elongation factors with the ribosome and hence is critical for the binding of aminoacyl-tRNA and for translocation. The domain is also the site of action of the eponymous toxins which catalyze covalent modification of single nucleotides that inactivate the ribosome. The conformation of the conserved guanosine at position 2655 is an especially prominent feature of the structure of the SRD: the nucleotide is bulged out of a helix and forms a base-triple with A2665 and U2656. G2655 in 23 S rRNA is protected from chemical modification when the elongation factors, EF-Tu and EF-G, are bound to ribosomes and the analog of G2655 in oligoribonucleotides is critical for recognition by the toxin sarcin and by EF-G. The contribution of G2655 to the function of the ribosome has been evaluated by constructing mutations in the nucleotide and determining the phenotype. Constitutive expression of a plasmid-encoded rrnB operon with a deletion of, or transversions in, G2655 is lethal to E. coli cells, whereas a defect in the growth of cells with a G2655A transition is observed only in competition with wild-type cells. The sedimentation profiles of ribosomes with mutations in G2655 are altered; most markedly by deletion or transversion of the nucleotide, less severely by transition to adenosine. Mutations of G2655 confer resistance to sarcin on ribosomes. Ribosomes with G2655Delta, G2655C, or G2655U mutations in 23 S rRNA are not active in protein synthesis, whereas those with the G2655A transition mutation suffer decreased activity.  相似文献   

20.
The enantiomers of the symmetric metallointercalator complex 1-Rh(MGP)2phi5+ [MGP = 4-(guanidylmethyl)-1,10-phenanthroline; phi = phenanthrenequinone diimine] bound to DNA decamer duplexes containing their respective 6 bp recognition sequences have been investigated using 1H NMR. Shape selection due to the chirality of the metal center and hydrogen-bonding contacts of ancillary guanidinium groups to 3'-G N7 atoms define the recognition by complexes which bind by intercalation to duplex DNA. The titration of Lambda-Rh into the self-complementary decamer containing the recognition sequence (5'-GACATATGTC-3', L1) resulted in one symmetric bound conformation observed in the 1H NMR spectrum, indicating that the DNA duplex retains its symmetry in the presence of the metal complex. Upfield chemical shifts of duplex imino protons and the disruption of the NOE base-sugar contacts defined the central T5-A6 intercalation site. The downfield shift of the G8 imino proton supports the conclusion that the pendant guanidinium arms make simultaneous H-bonding contacts to the N7 atoms of 3'-G8 bases on either side of the site. A variable-temperature study of a partially titrated sample (2:3 Lambda-Rh/L1) showed the exchange rate (kobs) at 298 K to be 68 s-1 and the activation barrier to exchange (DeltaG of association) to be 2.7 kcal/mol, a value comparable to the stacking energy of one base step. The results presented coupled with biochemical data are therefore consistent with binding models in which Lambda-1-Rh(MGP)2phi5+ (Lambda-Rh) traps the recognition site 5'-CATATG-3' in an unwound state, permitting intercalation centrally and hydrogen bonding to guanines at the first and sixth base pair positions. The data suggest a different model of binding and recognition by Delta-Rh. The titration of Delta-Rh into a DNA decamer containing the 6 bp recognition site (D1, 5'-CGCATCTGAC-3'; D2, 5'-GTCAGATGCG-3') resulted in two, distinct conformers, in slow exchange on the NMR time scale. The rate of exchange between the two conformers (kobs) at 298 K is 37 s-1, most likely due to partial dissociation between binding modes. The slower rate relative to Lambda-Rh association reflects the relative rigidity of the D1 and/or D2 sequence in comparison to L1. NOE cross-peaks between the intercalating phi ligand and protons of T5-C6, as well as the upfield shifts observed for imino protons at this step, serve to define the central T5-C6 step as the single site of intercalation. The downfield shift of the 3'-G imino protons indicates the complex makes hydrogen bond contacts with these bases. The complex, which is too small to span a 6 bp B-form DNA sequence, nonetheless makes major groove contacts with 3'-G bases to either side of the site. Notably, both 3'-guanine bases are necessary to impart site specificity and slow dissociation kinetics with the 5'-CATCTG-3' site, as evidenced by the extremely exchange-broadened two-dimensional NOESY spectra of Delta-Rh bound to modified duplexes containing N7-deazaguanine at either G8 or G18; the loss of one major groove contact completely abolishes specificity for 5'-CATCTG-3'. DNA chemical shifts upon binding and intermolecular NOE contacts therefore support a model in which Delta-Rh intercalates in one of two canted binding conformations. Within this model, each intercalation mode allows one guanidinium-guanine hydrogen bond at a time, while bringing the other arm close to the phosphate backbone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号