首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, self-healing natural rubber (SHNR) foam incorporating an intrinsic zinc thiolate ionic network was successfully prepared. The materials exhibited the ability to autonomously repair damage at room temperature without the need for external triggers. The investigation focused on the effect of sodium bicarbonate, employed as a blowing agent, on the self-healing performance, as well as the physical and mechanical properties of the foam. Various concentrations of sodium bicarbonate (0, 1, 4, 8, and 10 phr) were employed. The conventional two-roller mill was used for mixing and compounding, while compression molding was utilized for the vulcanization process. With increasing sodium bicarbonate concentration, the density, tensile strength, elongation at break, and compression set of the self-healing NR foam were found to decreased. Conversely, the porosity, shrinkage, compressive strength, and water uptake of the SHNR foam increased as the concentration of sodium bicarbonate increased. Scanning electron microscopy analysis revealed that the optimal concentration of sodium bicarbonate (8 phr) resulted in smaller, finer, and more uniform porous structures. The self-healing rubber foam incorporating 8 phr sodium bicarbonate exhibited improved properties in terms of tensile modulus, elongation at break, and tear strength, with healing efficiencies of 91.27%, 69.39%, and 83.99%, respectively.  相似文献   

2.
ABSTRACT

Cure characteristics and mechanical properties of the short nylon fiber reinforced neoprene rubber with and without epoxy bonding agent at various fiber loadings were studied. The fiber loading was varied from 0 to 30 phr and the resin content was in the range 0 to 5 phr. Minimum torque and cure time were increased in the presence of resin. Mechanical properties like tensile strength and abrasion resistance showed an increase with resin concentration. It was found that epoxy based bonding agents enhanced the properties of short nylon fiber reinforced neoprene rubber.  相似文献   

3.
通过熔融共混制备聚乳酸(PLA)/聚(己二酸丁二酯?对苯二甲酸丁二酯)(PBAT)共混物。以环氧扩链剂(CE)为相容剂,研究了CE含量对共混物的流变行为、结晶行为的影响,并研究了CE含量为5份的共混物在冷结晶温度下的发泡行为以及泡沫的拉伸性能。结果表明,共混体系的相容性、结晶速率随着CE含量的增加而增加、可发性提高,在添加了5份CE的共混物中得到了微纳复合泡孔,泡孔密度达到1013 个/cm3,相对于PLA泡沫,共混物泡沫的断裂伸长率提高了40 %。  相似文献   

4.
A reactive and nanoporous particle (OG) was introduced to UV-cured epoxy resin to form great low D k material for electronic industrial. We expected the porous cage of OG to decrease the dielectric constant of UV-cured epoxy resin and multiple reactive functional groups (oxirane ring) of OG reacted with photoinitiator to increase the curing density of UV-cured epoxy resin. The glass transition temperatures (T g) of epoxy increases with the increase of the OG content up to 10 phr due to the increase of crosslinking density. Excessive aggregation at highest OG content of 15 phr results in the reduced crosslinking density and T g. The char yield of the composite increases with increase of OG content because stable Si and SiO2 are formed after thermal decomposition. The presence of OG results in the higher porosity and thus the lower dielectric constant.  相似文献   

5.
通过单螺杆熔融挤出制备了热塑性聚酯弹性体(TPEE)发泡片材.研究了复合发泡剂偶氮二甲酰胺(AC)/碳酸氢柠檬酸配比、发泡剂包覆体以及TPEE交联剂对发泡片材性能的影响.表观密度、力学性能和SEM结果显示:复合发泡剂AC/碳酸氢钠/柠檬酸的最佳质量比为15/5/5,丙烯酸酯包覆体可使TPEE发泡效果变好.凝胶含量和压缩永久形变结果显示:凝胶含量随交联剂用量的增加而增大,环氧交联剂用量为0.8份和异氰酸酯交联剂用量为1份时,发泡片材的压缩永久形变最小.动态力学分析(DMA)显示:交联发泡片材的损耗因子(tanδ)大于0.25,峰值温度130℃.扫描电镜和光学显微镜结果显示:异氰酸酯交联剂用量为1份时,发泡片材的泡孔直径大小均匀,分布集中.  相似文献   

6.
In the present study, hydroxyl‐terminated polybutadiene (HTPB) liquid rubber was employed to modify epoxy resin using 2,4,6‐tri (dimethylaminomethyl) phenol as a catalyst, and methyl hexahydrophthalic anhydride as a curing agent. The reactions between HTPB and epoxy were monitored by Fourier transform infrared (FTIR); the mechanical and dielectric properties of HTPB modified epoxies were evaluated and the morphology was investigated through scanning electronic microscopy (SEM). The FTIR analysis evidenced the occurrence of a chemical reaction between the two components. The mechanical results indicated that the impact strength of HTPB‐modified epoxy was superior to that of the pure epoxy. As the HTPB content increased up to 10 phr the best mechanical performances in terms of tensile and flexural properties were achieved when compared to the unmodified epoxy. Higher concentration of HTPB resulted in larger particles and gave lower mechanical strength values. The incorporation of HTPB into epoxy decreased the dielectric constant and dissipation factor over a wide frequency range from 1 to 106 Hz, and improved the electrical resistivity. SEM micrographs showed that the modified epoxy exhibited a two‐phase morphology where the spherical rubber domains were dispersed in the epoxy matrix. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
A kind of new composite material composed of piezoelectric ceramic lead magnesium niobate-lead zirconate-lead titanate (PMN)/carbon nanofibers (CNFs)/epoxy resin (EP) were prepared by a resin casting method. The effects of carbon nanofibers on dielectric properties of PMN/CNFs/EP composites were investigated in this paper. The concetration of CNFs had significant effects on dielectric constant, dielectric loss, dielectric frequency dependence and dielectric temperature dependence of PMN/CNFs/EP composites. When the content of CNFs increased from 0 to 0.8 wt% of the epoxy resin, the dielectric constant at 1 kHz increased sharply from 13.6 to 158, and the dielectric loss increased from 0.0524 to 2.59. In plots of the dielectric constant against frequency and dielectric loss against frequency, the dielectric constant and dielectric loss reduced dramatically at lower frequency ranging from zero to about 105 Hz, then approach to be stable at frequency higher than 105 Hz. Moreover, as to the effects of temperature on dielectric constant and dielectric loss of PMN/CNFs/EP composites, the dielectric constant of composite increased ranging from 25°C to 160°C, and the dielectric loss of composite also showed increase besides that with CNFs content 0.8 wt%.  相似文献   

8.
A series of microcellular poly (phenylene sulfide) (PPS) foams were prepared by Mucell injection molding. The cell structure, mechanical properties, crystallization behavior and dielectric property of microcellular PPS foams were systemically investigated. The results showed that the longer the length of flow passage of injection mold, the larger cell size of microcellular PPS foams. The injection parameter of shot size played an important role in relative density of microcellular PPS foams. When the relative density of microcellular PPS foam reached to 0.658, the tensile strength, flexural strength and impact strength of PPS foam materials achieved 10.82 MPa, 52.99 MPa and 0.305 J/cm2, respectively. Meanwhile, with the relative density decreasing, the dielectric constant of PPS foam materials reduced, while the volume resistivity of its uprated.  相似文献   

9.
Epoxy microcomposites with high loading micro alumina (Al2O3, 100–400 phr) were prepared by casting method and their thermal and electrical properties were studied at temperatures from 25 to 150 °C. The electric resistance device and the dielectric electrode device were designed to measure the electrical properties of the composites. Thermogravimetric analysis (TGA) and scanning electron microscopic proves the homodispersion of Al2O3 microparticles in epoxy. TGA indicates that the temperature of 5 % weight loss of epoxy/Al2O3 (100 phr) composite is 366 °C, 34 °C higher than that of pure epoxy. Differential scanning calorimetry shows that the glass transition temperature of epoxy/Al2O3 composite (400 phr) increases to 114.7 °C, 9.2 °C higher than that of pure epoxy. Thermal conductivity test demonstrated that with increasing Al2O3 content at 25 °C, thermal conductivity of epoxy/Al2O3 composites increased to 1.382 W/(m K) which is 5.62 times that of pure epoxy. Electrical tests demonstrate that by increasing of Al2O3 content and temperature, the electric resistance and dielectric properties of the composites show great dependencies on them. Resistivities of all the specimens decreased with the increasing of temperature owing to the increasing molecular mobility in the higher temperature. Resistivity of pure epoxy at 25 °C is about 9.56 × 1016 Ω cm, about one order of magnitude higher than that of pure epoxy at 125 °C and two orders of magnitude higher than that of pure epoxy at 150 °C. These results can give some advice to design formulations for practical applications in power apparatus.  相似文献   

10.
A novel polymeric coating with high thermal conductivity was prepared using a hydroxyl-terminated polydimethylsiloxane-modified epoxy resin and hybrid aluminum nitride (AlN) particles with various sizes. It was found that the coating exhibited a maximum thermal conductivity of 1.78 W/m K at 50 wt% filler content and a preferable mass ratio. This was a result of the synergistic effect of hybrid fillers giving rise to a better heat conduction capability as opposed to a coating without fillers. Furthermore, thermogravimetric analysis revealed that the coating exhibited an excellent high temperature resistance owing to the modified matrix and interaction between filler and matrix; and a dielectric study demonstrated that the dielectric constant, volume resistivity and dielectric strength of the coating at 50 wt% filler concentration were 5.6, 8.2 × 1013 Ω·cm and 12 kV/mm, respectively. In addition, the mechanical properties declined obviously with filler content.  相似文献   

11.
Nanocomposite foams contain very fine cells because of the fillers in nano scale. Due to the limited size of the cells, the mechanical and physical properties of nanocomposite foams are improved compared to polymer foams. In this study PVC/clay nanocomposite foams containing various concentrations of nano-clay (1, 3 and 5 phr) were successfully prepared. The samples were placed under CO2 gas pressure at 5 MPa, by immersing in glycerin bath at 60, 70, 80 °C and 20, 30, 40 s, respectively, to form foams. The density and the cell size as a factor of nano-clay content, foaming time and temperature were investigated using Archimedes method and scanning electron microscopy, respectively. The minimum density was obtained in the sample containing 1 phr nanoclay prepared at 80 °C and 40 s. The minimum cell size was related to the sample containing 5 phr nanoclay at 60 °C and 20 s.  相似文献   

12.
Toughening of a diglycidyl ether of bisphenol-A (DGEBA)-based epoxy resin with liquid carboxyl-terminated butadiene acrylonitrile (CTBN) copolymer has been investigated. For this purpose six blend samples were prepared by mixing DGEBA with different concentrations of CTBN from 0 to 25 phr with an increment of 5 phr. The samples were cured with dicyandiamide curing agent accelerated by Monuron. The reactions between oxirane groups of DGEBA and carboxyl groups of CTBN were followed by Fourier-transform infrared (FTIR) spectroscopy. Tensile, impact, fracture toughness and dynamic mechanical analysis of neat as well as the modified epoxies have been studied to observe the effect of CTBN modification. The tensile strength of the blend systems increased by 26 % when 5 phr CTBN was added, and it remained almost unchanged up to 15 phr of CTBN. The elongation-at-break and Izod notched impact strength increased significantly, whereas tensile modulus decreased gradually upon the addition of CTBN. The maximum toughness of the prepared samples was achieved at optimum concentration of 15 phr of CTBN, whereas the fracture toughness (K IC) remained stable for all blend compositions of more than 10 phr of CTBN. The glass transition temperature (T g) of the epoxy resin significantly increased (11.3 °C) upon the inclusion of 25 phr of CTBN. Fractured surfaces of tensile test samples have been studied by scanning electron microscopic analysis. This latter test showed a two-phase morphology where the rubber particles were distributed in the epoxy resin with a tendency towards co-continuous phase upon the inclusion of 25 phr of CTBN.  相似文献   

13.
Epoxy resins have low impact strength and poor resistance to crack propagation, which limit their many end use applications. The main objective of this work is to incorporate both acrylonitrile-butadiene-styrene copolymer (ABS) and organically modified clay (Cloisite 30B) into epoxy matrix with the aim of obtaining improved material with the impact strength higher than neat epoxy, epoxy/clay and epoxy/ABS hybrids without compromising the other desired mechanical properties such as tensile strength and modulus. Impact and tensile properties of binary and ternary systems were investigated. Tensile strength, elongation at break and impact strength were increased significantly with incorporation of only 4 phr ABS to epoxy matrix. For epoxy/clay nanocomposite with 2.5% clay content, tensile modulus and strength, and impact strength were improved compared to neat epoxy. With incorporation of 2.5% clay and 4 phr ABS into epoxy matrix, 133% increase was observed for impact strength. Ternary nanocomposite had impact and tensile strengths greater than values of the binary systems. Morphological properties of epoxy/ABS, epoxy/clay and epoxy/ABS/clay ternary nanocomposite were studied using atomic force microscopy (AFM) phase imaging, scanning electron microscopy (SEM) and wide angle X-ray diffraction (WAXD). New morphologies were achieved for epoxy/ABS and epoxy/ABS/clay hybrid materials. Exfoliated clay structure was obtained for epoxy/clay and epoxy/ABS/clay nanocomposite.  相似文献   

14.
Insulating materials should be heat and fire resistant within the specified limits without damaging other properties. In the present work, different samples of polyvinyl chloride (PVC) and PVC/alumina trihydrate (ATH) composites have been prepared and exposed to various degrees of temperatures, which represent the variation of the temperature in the surrounding environment for outdoor purposes. The permittivity () and dielectric loss (ε″) over the frequency range from 100 Hz to 100 kHz and also the electrical resistivity (ρ) have been investigated. The mechanical properties and the fire-retardant efficiency of the PVC and PVC/ATH composites have also been studied. It was found that the permittivity and dielectric loss (ε″) increase slightly by increasing the ATH content up to 25 phr, after which an abrupt increase was noticed. The electrical resistivity (ρ) was found to be 8.3×1010 and 3.1×1010 Ω · cm for the samples containing 25 phr ATH filler at 25 and 70°C, respectively. The effect of various temperatures (5, 25, and 70°C) on the mechanical properties has been evaluated for the different samples. Increasing the ATH content to 45 phr improves the compressive strength at room temperature and at 5°C.

The investigations demonstrate that the rate of burning time and the density of smoke of PVC/ATH composites decrease as the concentration of ATH increase.  相似文献   

15.
The main objective of this study is to obtain ethylene‐vinyl acetate copolymer (EVA)/multi‐walled carbon nanotube (MWCNT)/organoclay foams with improved mechanical properties without increase of their density, compared with EVA/MWCNT foams. MWCNT content was fixed at 5 phr in this study. To achieve the objective, EVA was melt‐mixed with MWCNTs and organoclays in a bench kneader. And the obtained EVA/MWCNT/organoclay mixtures were mixed with chemical blowing agent and cross‐linking agent in a two roll‐mill. After being mixed in a two roll‐mill, the mixtures were put in a mold and the foams were obtained by compression‐molding. The effect of organoclay content on the mechanical properties and surface resistivity of EVA/MWCNT (5 phr)/organoclay foams was investigated. The addition of 1 phr organoclays to the EVA/MWCNT (5 phr) foams resulted in the improvement of tensile strength, 100% tensile modulus, tear strength, and compression set without increase of the density. However, further increase in content of organoclay (3 phr) leaded to a deterioration of mechanical properties. Therefore, determining the optimal content of organoclay was very important in order to achieve the main objective of this study. POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

16.
The development of low toxicity rigid epoxy foams as an alternative to polyurethane foams for electronics encapsulation is described. The basic foam components - epoxy resin, hardener, accelerator, blowing agent and surfactant - are blended to form a two part system which is mixed and foamed when required. Each foam component is selected for its contribution to the foaming reaction and the final foam properties. The balance of component miscibility, viscosity, reaction rate and exotherm determine foam quality. Foam properties are affected by (1) density (2) cell structure and (3) the molecular structure of the reactants. Initial foam development utilised epoxy/amine chemistry and produced two foams, Feldex F3 and F4. Subsequently, use of a more reactive polymercaptan hardener improved foam strength and process times, resulting in Feldex F5 and F6 which have been used successfully to prepare quality mouldings and encapsulated electronics. Recently, development has been extended to new areas of application, e.g. high temperature foams. The mechanical, electrical, thermal and chemical properties of the best epoxy foams have been evaluated; selected results are reported. The epoxy foams developed offer low density, high strength, low dielectric constant and loss tangent, high volume resistivity, good thermal insulation, low corrosivity and low toxicity. In addition, epoxy foams soften in acetone, an advantage over their polyurethane counterparts since encapsulated electronics may be retrieved without employing corrosive solvents. (Feldex is a registered trade mark of THORN EMI Electronics.)  相似文献   

17.
Mica/glass fiber-reinforced epoxy with 0° and 45° ply angle were prepared by hand lay-up and the mechanical and damping properties were studied. Results show that the addition of mica resulted in decrease of tensile strength and modulus for both composites. Althogh flexural strength and modulus of composites with 45° appeared a maximum at 5 phr mica loading, that of composites with 0° reached a maximum at 10 phr mica loading. For composites with 0°, damping ratio reaches maximum at 5 phr mica. Although for composites with 45°, damping ratio decrease with increasing mica loading.  相似文献   

18.
In this study, microcellular foaming of low‐density polyethylene (LDPE) using nano‐calcium carbonate (nano‐CaCO3) were carried out. Nanocomposite samples were prepared in different content in range of 0.5–7 phr nano‐CaCO3 using a twin screw extruder. X‐ray diffraction and scanning electron microscopy (SEM) were used to characterize of LDPE/nano‐CaCO3 nanocomposites. The foaming was carried out by a batch process in compression molding with azodicarbonamide (ADCA) as a chemical blowing agent. The cell structure of the foams was examined with SEM, density and gel content of different samples were measured to compare difference between nanocomposite microcellular foam and microcellular foam without nanomaterials. The results showed that the samples containing 5 phr nano‐CaCO3 showed microcellular foam with the lowest mean cell diameter 27 μm and largest cell density 8 × 108 cells/cm3 in compared other samples. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

19.
在确定树脂黏度和固含量的前提下,考察了发泡温度、发泡剂、固化剂等对酚醛泡沫塑料性能的影响。结果表明,升高温度有利于发泡,但温度过高,泡沫发生穿孔现象。固化剂用量增大,泡沫起泡时间和指干时间缩短,当其用量在16~18份(质量份,下同)时,泡沫体表观质量较好。发泡剂用量增大,泡沫表观密度和压缩强度显著降低。当发泡剂用量大于12份后,泡沫体密度变化不大。  相似文献   

20.
In this paper, the effect of silver coating and size of fibre on electrical properties of sisal fibre-reinforced epoxy composites has been reported. For this purpose, epoxy composites reinforced with silver-coated sisal (of 5 and 10 mm length) prepared by hand moulding and samples were characterized for their electrical properties, such as dielectric constant (ε′), dielectric dissipation factor (tan δ) and AC conductivity (σ ac), at different temperatures and frequencies. It was observed that dielectric constant increases with increase in temperature and decreases with increase in frequency from 500 Hz to 5 kHz. The peak height at the transition temperature decreases with increasing frequency. Interestingly, sample having silver-coated fibre of 5 mm length exhibited higher value of dielectric constant as compared to the sample having 10 mm of fibre length, which is attributed to the increased surface area of coated fibre. This behaviour of the material can be explained in terms of interfacial polarization. At a constant volume of fibres and at a length of 5 mm, the number of interfaces per unit volume element is high and this results in high interfacial polarization. The number of interfaces decreases as the fibre length increases and therefore the value of ε′ decreases at 10 mm fibre length. To study the changes in structure of samples, Fourier transform infrared spectrometry and scanning electron microscopy of the samples were carried out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号