首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of rare earth solution (RES) surface treatment of carbon fibers (CFs) on the tensile strength and tribological properties of CF‐reinforced polyimide (CF/PI) composite was investigated. Experimental results revealed that the tensile strength of RES‐treated CFs reinforced PI composite was improved by about 19% compared with that of untreated composite, while 7% improvement was achieved by air oxidation. Compared with the untreated and air‐oxidated CF/PI composite, the RES‐treated composite had the lowest friction coefficient and specific wear rate under given applied load and reciprocating sliding frequency. RES treatment effectively improved the interfacial adhesion between CFs and PI. The strong interfacial adhesion of the composite made CFs not easy to detach from the PI matrix and prevented the rubbing‐off of PI, and accordingly improved the friction and wear properties of the composite. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

2.
Abstract

Polyacrylonitrile based carbon fibres were submitted to nitric acid oxidation treatments to improve the interfacial adhesion of the carbon fibre reinforced polyimide (CF/PI) composite. The carbon fibre surfaces were characterised by X-ray photoelectron spectroscopy. Nitric acid oxidation not only affects the oxygen concentration, but also produces an appreciable change in the nature of the chemical functions, namely the conversion of hydroxy type oxygen into carboxyl functions. Nitrogen concentration of nitric acid oxidation treated carbon fibre is ~1·2 times higher compared with untreated one. The mechanical and tribological properties of the CF/PI composites treated with nitric acid oxidation were investigated. Results showed that the tensile strength of the CF/PI composites improved remarkably due to nitric acid treatment along with enhancement in friction and wear performance.  相似文献   

3.
Silane surface modification method was used for the surface treatment of carbon fiber to improve the interfacial adhesion of the carbon fiber reinforced bismaleimide(BMI) composite. The surface characteristics of untreated and treated carbon fiber were characterized by Fourier transform infrared (FT-IR) spectroscope. The friction and wear properties of the BMI composites filled with differently surface treated carbon fibers(20 vol%), were investigated on a ring-on-block tribometer. Experimental results revealed that silane treatment largely reduced the friction and wear of CF/BMI composites. Scanning electron microscope (SEM) of worn surfaces of BMI composites showed that surface treated CF/BMI composite had the strongest interfacial adhesion.  相似文献   

4.
The effect of air-oxidation and ozone surface treatment of carbon fibers (CF) on tribological properties of CF reinforced Polytetrafluoroethylene (PTFE) composites under oil-lubricated condition was investigated. Experimental results revealed that ozone treated CF reinforced PTFE (CF/PTFE) composite had the lowest friction coefficient and wear. X-ray photoelectron spectroscopy (XPS) study of carbon fiber surface showed that the increase in the amount of oxygen-containing groups enhanced interfacial adhesion between CF and PTFE matrix. With strong interfacial adhesion of the composite, stress could be effectively transmitted to carbon fibers; carbon fibers were strongly bonded with PTFE matrix.  相似文献   

5.
The effect of surface treatment [rare earth solution (RES) and air oxidation] of carbon fibers (CFs) on the mechanical and tribological properties of carbon fiber‐reinforced polyimide (CF/PI) composites was comparatively investigated. Experimental results revealed that surface treatment can effectively improve the interfacial adhesion between carbon fiber and PI matrix. Thus, the flexural strength and wear resistance were significantly improved. The RES surface treatment is superior to air oxidation treatment in promoting interfacial adhesion between carbon fiber and PI matrix. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

6.
靖长亮  何春霞 《塑料》2012,41(3):4-6
采用硅烷偶联剂KH-550、高温氧化和超声波+偶联剂复合方法(简称超声复合方法)分别对碳纤维(CF)进行表面处理,制备不同表面处理的CF改性热塑性聚酰亚胺(PI)复合材料,研究表面处理CF对CF/PI复合材料力学和摩擦磨损性能的影响,利用扫描电子显微镜对PI复合材料磨损表面进行观察。结果表明:与纯PI相比,CF的加入提高了PI复合材料的机械性能,经超声复合处理的CF的增强效果较好;磨损表面表明:超声复合处理CF改性PI复合材料磨损表面的犁沟和磨屑较少,且平整。  相似文献   

7.
电化学氧化处理对碳纤维及EP复合材料性能的影响   总被引:1,自引:0,他引:1  
利用电化学氧化法对碳纤维(CF)进行表面改性处理,并将改性CF用于改性环氧树脂(EP),研究了CF处理前后纤维复丝拉伸强度和EP/CF复合材料的力学性能。结果表明,氧化处理改善了CF与基体的粘结性;经电化学氧化处理后CF的表面羟基含量提高39.96%,羧基/酯基含量提高141.06%,活性碳原子数增加34.28%;随着氧化电流密度的增加,CF复丝的拉伸强度和复合材料的层间剪切强度均呈现先增大后减小的变化趋势,当电流密度为0.2A/m^2时,复合材料的层间剪切强度提高31.70%。  相似文献   

8.
Interfacial adhesion between fiber and matrix has a strong influence on composite mechanical performance. To exploit the reinforcement potential of the fibers in advance composite, it is necessary to reach a deeper understanding on the relation between fiber surface treatment and interfacial adhesion. In this study, air plasma was applied to modify carbon fiber (CF) surface, and the capability of plasma grafting for improving the interfacial adhesion in CF/thermoplastic composite was discussed and also the mechanism for composite interfacial adhesion was analyzed. Results indicated that air plasma treatment was capable of increasing surface roughness as well as introducing surface polar groups onto CF; both chemical bonding and mechanical interaction were efficient in enhancements of interlaminate shear strength of CF/PPESK composite, while mechanical interaction has a dominant effect on composite interfacial adhesion than chemical bonding interaction. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

9.
Carbon fiber (CF) reinforced polyamide 6 (PA6) composite has an extensive application. However, the performances of CF/PA6 composite are constrained by the poor interfacial adhesion between CF and PA6 matrix. In this article, in order to strengthen the interfacial adhesion of CF/PA6 composite, a layer of poly(cyclotriphosphazene-co-4,4′-sulfonyldiphonel) (PZS) hybrid coating with plenty of PZS microspheres (PZSMS) was successfully introduced onto CF surface through facile in situ polymerization. After surface modification, the surface morphologies and the surface chemical structures of fibers changed distinctly. On one hand, the PZSMS provided more contact points and increased mechanical interlocking between CF and PA6 matrix. On the other hand, numerous hydrogen bonds between CF and PA6 were formed due to a great amount of unique polar groups on modified CF surface. Consequently, in comparison with untreated CF, the interfacial shear strength of CF-PZSMS/PA6 composites was improved from 37.68 ± 3.16 to 53.79 ± 3.38 MPa, by 42.75 ± 3.02%. The results indicated that PZS hybrid coating on fiber surface effectively improved the interfacial adhesion of CF/PA6 composites, and the stronger hydrogen bonding and the enhanced mechanical interlocking synergistically played a major role in such significant improvements.  相似文献   

10.
Irradiation surface modification method was used for the surface treatment of ultrahigh molecular weight polyethylene (UHMWPE) fibre to improve the interfacial adhesion of the UHMWPE fibre reinforced PVC composite. The surface characteristics of untreated and treated UHMWPE fibre were characterised by XPS and Fourier transform infra-red spectroscope. The friction and wear properties of the PVC composites filled with differently surface-treated UHMWPE fibres (20?vol.-%), were investigated on a ring-on-block tribometer. Experimental results revealed that irradiation treatment largely increased the mechanical properties of UHMWPE fibre/neoprene/PVC (UF/N/PVC) composites. Scanning electron microscope investigation of worn surfaces of PVC composites showed that surface-treated UF/N/PVC composite had the strongest interfacial adhesion.  相似文献   

11.
聚四氟乙烯填充聚醚醚酮及其复合材料的研究   总被引:4,自引:0,他引:4  
利用熔融共混工艺制备了PEEK/PTFE共混物及其复合材料,研究了PTFE对PEEK共混物及其复合材料力学性能和耐磨性的影响,结果表明,PEEK经10% ̄PTFE填充改性,玻纤/碳纤混杂增强后,由于磨损方式的改变,使该复合材料不仅保持了良好的物理力学性能,而且具有较低的摩擦系数,耐磨性也得到明显改善。  相似文献   

12.
采用模压成型法制备了聚苯硫醚(PPS)/聚酰胺酰亚胺(PAI)合金及其碳纤维(CF)改性复合材料。测试分析了该复合材料的力学性能,并通过扫描电镜(SEM)对其摩擦磨损表面形貌进行了观察,探讨了复合材料的摩擦磨损性能;考察了PPS/PAI合金的最优配比及CF含量对PPS/PAI/CF复合材料性能的影响。结果表明:PAI的加入改善了PPS的力学性能,当PPS/PAI质量比为40/60时,PPS/PAI合金的力学性能最优;另外,CF的加入使PPS/PAI/CF填充复合材料的摩擦系数和磨损量大幅度下降,其中,当CF含量为30%时,PPS/PAI/CF填充复合材料的摩擦系数和磨损量较未填充PPS/PAI分别下降了66%和90%。  相似文献   

13.
PA66 composites filled with surface-treated carbon fiber were prepared by twin-screw extruder in order to study the influence of carbon fiber surface arylboronic acid treatment on the mechanical and tribological behavior of the PA66 composites (CF/PA66). The mechanical property, friction and wear tests of the composites with untreated and treated carbon fiber were performed and the worn surface morphology was analyzed. The results show that the worn surface area of the treated carbon fiber was far smoother than that of the untreated carbon fiber and there formed a bonding adhesion on the carbon fiber surface after treatment. The tensile strength of CF/PA66 composites with surface arylboronic acid treatment was improved. The friction coefficient and wear of arylboronic acid treated CF/PA66 composites were apparently lower than that with untreated carbon fiber. In conclusion, the surface treatment favored the improvement of the higher interface strength and so had good effect on improving the tribological properties of the composites.  相似文献   

14.
The mechanical and tribological properties of carbon fiber (CF) reinforced polyamide 66 (PA66)/polyphenylene sulfide (PPS) blend composite were studied in this article. It was found that CF reinforcement greatly increases the mechanical properties of PA66/PPS blend. The friction coefficient of the sample decreases with the increase of CF content. When CF content is lower (below 30%), the wear resistance is deteriorated by the addition of CF. However, the loading of higher than 30% CF significantly improves the tribological properties of the blend. The lowest friction coefficient (0.31) and the wear volume (1.05 mm3) were obtained with the PA66/PPS blend containing 30% CF. The transfer film and the worn surface formed by sample during sliding were examined by scanning electron microscopy. The observations revealed that the friction coefficient of PA66/PPS/CF composite depends on the formation and development of a transfer film on the counterface. The abrasive wear caused by ruptured CFs (for lower CF content) and the load bearing ability of CFs (for higher CF content) are the major factors affecting the wear volume. In addition, the improvements of mechanical properties, thermal conductivity, and self‐lubrication of bulk CFs are also contributed to the wear behavior of PA66/PPS/CF composite. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

15.
The purpose of the work was to determine the conditions of CF preparation to obtain carbide composites with favorable mechanical response. The relationships between the interfacial properties of fiber/polymethylsiloxane composite, and mechanical properties of the resulting fiber/carbide composites were investigated. The CF/resin interfacial strength was modified by oxidation of CF surface with nitric acid, silanization, and depositing CNT or a pyrolytic carbon layer (PyC). The study of composite interphases (ILSS and SEM) and surface tests of the modified CF (XPS, FT-IR, wettability measurements) showed different nature of the bonding occurring at the fiber/resin and fiber/ceramics boundary. The CF silanization significantly improved the ILSS between CFs and resin by 38.5%, while reduced flexural properties of carbide composites. The most promising treatment method of CF for PIP-based ceramic composites was modification with PyC, which provided 2 times higher ILSS, 1.5 times higher flexural strength and improved work to fracture (WF) as compared to unmodified CF.  相似文献   

16.
Epoxy chloropropane (ECP) grafting modification method was used for the surface treatment of Kevlar fiber to improve the interfacial adhesion of the Kevlar fiber-reinforced polyimide (PI) composite. The surface characteristics of untreated and treated Kevlar fiber were characterized by Fourier transform infrared (FT-IR) spectroscope. The friction and wear properties of the polyimide (PI) composites filled with differently surface treated Kevlar fibers (20 vol%), sliding against GCr15 steel, were investigated on a ball-on-block reciprocating UMT-2MT tribometer. Experimental results revealed that ECP treatment largely reduced the friction and wear of Kevlar/PI composites. Scanning electron microscope (SEM) investigation of worn surfaces of PI composites showed that ECP treated Kevlar/PI composite had the strongest interfacial adhesion and the smoothest worn surface under given load and reciprocating sliding frequency.  相似文献   

17.
Silane coupling agent SG-Si900 (SGS) modification and air-oxidation methods were used to improve the interfacial adhesion of the carbon fiber-reinforced polyimide (CF/PI) composite. The interfacial characteristics of the composites reinforced by the carbon fibers treated with different surface modification methods were comparatively investigated. Results showed that both SGS modification and air-oxidation method improved the adhesion between the reinforcement and matrix and SGS modification method was superior to air-oxidation method. For CF/PI composite the optimum interfacial adhesion was obtained at 0.3 wt% SGS concentration. The fracture surfaces of samples were investigated by scanning electronic microscopy (SEM) to analyze the effects of different surface treatment methods.  相似文献   

18.
The hydroxylate carbon nanotubes (CNTs) were grafted by chemical method on the surface of the oxidized carbon fibers (CF) to improve the mechanical and tribological properties of polyimide (PI). The microstructure and fracture surface of the polyimide composites indicated that CF–CNTs hybrid as a multiscale reinforcement can distribute into the PI matrix homogeneously. Tribo-tests further showed that CF–CNTs hybrid had a better effect on hardness increment, impact strength enhancement, friction reduction, and wear resistance. Compared to the neat PI, the friction coefficient and wear rate of CF–CNTs/PI composite deceased by 23.2 and 55.9%, respectively. In particular, the loading capacity and high speed resistance of CF–CNTs/PI composite were greatly improved. The corresponding wear mechanisms were also discussed by observing the worn surface of the PI composites. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47900.  相似文献   

19.
Ultra-high-molecular-weight polyethylene (UHMWPE) and thermoplastic polyester-type polyurethane (PU) were blended with polyethylene-grafted maleic anhydride (PE-g-MAH) added as a compatibilizer. A dual roller was used as a mixer, and all specimens were produced by the compression molding method. It was found that without compatibilizer, UHMWPE and PU were immiscible polymers and mixing PE-g-MAH reduced the size of the dispersed PU domains by a factor of 10 to reach 0.5–5 μm and caused a more uniform distribution of the PU phase in the UHMWPE matrix. Also, PE-g-MAH influenced the crystallinity of UHMWPE, increased the amorphous region in the UHMWPE phase, and improved interfacial adhesion. The threshold concentration of compatibilizer was 10 wt %, and the compatibilized UHMWPE/PU composites had improved mechanical properties and lower wear rate than the uncompatibilized composite. At some ratio points, compatibilizer composites even had better wear-resistance properties than pure UHMWPE. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 3290–3295, 2001  相似文献   

20.
This article aims to study the effect of the sizing materials type on the mechanical, thermal, and morphological properties of carbon fiber (CF)‐reinforced polyamide 6,6 (PA 6,6) composites. For this purpose, unsized CF and sized CFs were used. Thermogravimetric analysis was performed, and it has been found that certain amounts of polyurethane (PU) and PA sizing agents decompose during processing. The effects of sizing agent type on the mechanical and thermomechanical properties of all the composites were investigated using tensile, Izod impact strength test, and dynamic mechanical analysis. Tensile strength values of sized CF‐reinforced composites were higher than that of unsized CF‐reinforced composites. PA and polyurethane sized CF‐reinforced composites exhibited the highest impact strength values among the other sized CF‐reinforced composites. PU and PA sized CF‐reinforced composites denoted higher storage modulus and better interfacial adhesion values among the other sizing materials. Scanning electron microscope studies indicated that CFs which were sized with PU and PA have better interfacial bonding with PA 6,6 matrix among the sized CFs. All the results confirmed that PA and PU were suitable for CF's sizing materials to be used for PA 6,6 matrix. POLYM. COMPOS., 34:1583–1590, 2013. © 2013 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号