首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optimal Fixture Design Accounting for the Effect of Workpiece Dynamics   总被引:3,自引:6,他引:3  
This paper presents a fixture layout and clamping force optimal synthesis approach that accounts for workpiece dynamics during machining. The dynamic model is based on the Newton– Euler equations of motion, with each fixture–workpiece contact modelled as an elastic half-space subjected to distributed nor-mal and tangential loads. The fixture design objective in this paper is to minimise the maximum positional error at the machining point during machining. An iterative fixture layout and clamping force optimisation algorithm that yields the "best" improvement in the objective function value is presented. Simulation results show that the proposed optimis-ation approach produces significant improvement in the work-piece location accuracy. Additionally, the method is found to be insensitive to the initial fixture layout and clamping forces.  相似文献   

2.
Machining fixtures are used to locate and constrain a workpiece during a machining operation. To ensure that the workpiece is manufactured according to specified dimensions and tolerances, it must be appropriately located and clamped. Minimising workpiece and fixture tooling deflections due to clamping and cutting forces in machining is critical to machining accuracy. An ideal fixture design maximises locating accuracy and workpiece stability, while minimising displacements.The purpose of this research is to develop a method for modelling workpiece boundary conditions and applied loads during a machining process, analyse modular fixture tool contact area deformation and optimise support locations, using finite element analysis (FEA). The workpiece boundary conditions are defined by locators and clamps. The locators are placed in a 3-2-1 fixture configuration, constraining all degrees of freedom of the workpiece and are modelled using linear spring-gap elements. The clamps are modelled as point loads. The workpiece is loaded to model cutting forces during drilling and milling machining operations. Fixture design integrity is verified. ANSYS parametric design language code is used to develop an algorithm to automatically optimise fixture support and clamp locations, and clamping forces, to minimise workpiece deformation, subsequently increasing machining accuracy. By implementing FEA in a computer-aided-fixture-design environment, unnecessary and uneconomical “trial and error” experimentation on the shop floor is eliminated.  相似文献   

3.
Contact forces between workpiece and fixture define fixture stability during clamping and influence workpiece accuracy during machining. In particular, forces acting in the contact region are important for understanding deformation of the workpiece at the contact region. This paper presents a model that combines contact elasticity with finite element methods to predict the contact load and pressure distribution at the contact region in a workpiece-fixture system. The objective is to determine how much clamp forces can be applied to generate adequate contact forces to keep the workpiece in position during machining. The model is able to predict the normal and tangential contact forces as well as the pressure distribution at each workpiece-fixture contact in the fixturing system. Model prediction is shown to be in good agreement with known industry practice on clamp force determination. The presented method has no limits on the types of materials that can be analyzed.  相似文献   

4.
Workpiece motion arising from localised elastic deformation at fixture-workpiece contacts owing to clamping and machining forces is known to affect significantly the workpiece location accuracy and, hence, the final part quality. This effect can be minimised through fixture design optimisation. The clamping force is a critical design variable that can be optimised to reduce the workpiece motion. This paper presents a new method for determining the optimun clamping forces for a multiple clamp fixture subjected to quasu-static machining forces. The method uses elastic contact mechanics models to represent the fixture-workpiece contact and involves the formulation and solution of a multi-objective constrained oprimisation model. The impact of clamping force optimisation on workpiece location accuracy is analysed through examples involving a 3-2-1 type milling fixture.  相似文献   

5.
在夹具设计过程中,工件-夹具之间的接触力是工件稳定性分析和加工精度估算的关键因素.为此,根据多重夹紧力对工件的作用过程,建立了接触力与多重夹紧力的大小、作用点以及夹紧顺序之间的接触力模型.基于总余能原理,提出了接触力模型的求解算法.最后通过典型实例,详细说明了接触力的分析预测过程.  相似文献   

6.
In machining fixtures, minimizing workpiece deformation due to clamping and cutting forces is essential to maintain the machining accuracy. This can be achieved by selecting the optimal location of fixturing elements such as locators and clamps. Many researches in the past decades described more efficient algorithms for fixture layout optimization. In this paper, artificial neural networks (ANN)-based algorithm with design of experiments (DOE) is proposed to design an optimum fixture layout in order to reduce the maximum elastic deformation of the workpiece caused by the clamping and machining forces acting on the workpiece while machining. Finite element method (FEM) is used to find out the maximum deformation of the workpiece for various fixture layouts. ANN is used as an optimization tool to find the optimal location of the locators and clamps. To train the ANN, sufficient sets of input and output are fed to the ANN system. The input includes the position of the locators and clamps. The output includes the maximum deformation of the workpiece for the corresponding fixture layout under the machining condition. In the testing phase, the ANN results are compared with the FEM results. After the testing process, the trained ANN is used to predict the maximum deformation for the possible fixture layouts. DOE is introduced as another optimization tool to find the solution region for all design variables to minimum deformation of the work piece. The maximum deformations of all possible fixture layouts within the solution region are predicted by ANN. Finally, the layout which shows the minimum deformation is selected as optimal fixture layout.  相似文献   

7.
铣削加工中最小夹紧力的计算   总被引:1,自引:0,他引:1  
金秋  刘少岗 《工具技术》2010,44(4):36-39
提出了一种计算铣削加工中夹紧工件所需最小夹紧力的简洁方法。首先,确定了工件与夹具元件之间的接触刚度;其次,建立了接触变形量与工件位移量的关系;然后,给出了工件的静态平衡方程。通过合并以上方程,建立了线性方程组计算工件与夹具元件之间的切向接触力,并根据最大切向接触力进一步计算出夹具元件与工件之间不发生相对滑动所需理论最小夹紧力。最后,通过算例验证了该方法的正确性。  相似文献   

8.
In any machining fixture, the workpiece elastic deformation caused during machining influences the dimensional and form errors of the workpiece. Placing each locator and clamp in an optimal place can minimize the elastic deformation of the workpiece, which in turn minimizes the dimensional and form errors of the workpiece. Design of fixture configuration (layout) is a procedure to establish the workpiece–fixture contact through optimal positioning of clamping and locating elements. In this paper, an ant colony algorithm (ACA) based discrete and continuous optimization methods are applied for optimizing the machining fixture layout so that the workpiece elastic deformation is minimized. The finite element method (FEM) is used for determining the dynamic response of the workpiece caused due to machining and clamping forces. The dynamic response of the workpiece is simulated for all ACA runs. This paper proves that the ACA-based continuous fixture layout optimization method exhibits the better results than that of ACA-based discrete fixture layout optimization method.  相似文献   

9.
薄壁件的装夹变形机理分析与控制技术   总被引:8,自引:0,他引:8  
系统地提出一个分析与优选夹紧力大小、作用点以及夹紧顺序的通用方法.基于由摩擦力引起的接触力历史依赖性,定量地分析多重夹紧元件及其作用顺序对薄壁件变形的影响,并建立装夹方案的数学模型.同时提出基于最小总余能原理的有限元求解方法.另一方面,基于装夹方案的优化模型,提出装夹变形的控制技术以便获得最高的工件加工精度.以典型铝合金航空材料构件为例,模拟与分析夹紧力及夹紧顺序对其变形的影响过程.  相似文献   

10.
This paper describes a computational method to calculate the friction force between two rough surfaces. In the model used, friction results from forces developed during elastic deformation and shear resistance of adhesive junctions at the contact areas. Contacts occur between asperities and have arbitrary orientations with respect to the surfaces. The size and slope of each contact area depend on external loads, mechanical properties and topographies of surfaces. Contact force distribution is computed by iterating the relationship between contact parameters, external loads, and surface topographies until the sum of normal components of contact forces equals the normal load. The corresponding sum of tangential components of contact forces constitutes the friction force. To calculate elastic deformation in three dimensions, we use the method of influence coefficients and its adaptation to shear forces to account for sliding friction. Analysis presented in Appendix A gives approximate limits within which influence coefficients developed for flat elastic half-space can apply to rough surfaces. Use of the method of residual correction and a successive grid refinement helped rectify the periodicity error introduced by the FFT technique that was used to solve for asperity pressures. The proposed method, when applied to the classical problem of a sphere on a half-space as a benchmark, showed good agreement with previous results. Calculations show how friction changes with surface roughness and also demonstrate the method's efficiency.  相似文献   

11.
This paper considers the mechanical interaction due to surface roughness and examines the surface theories using the classical definition of coefficient of friction: the tangential-to-normal load ratio. The postulation for maximum static friction is used to experimentally evaluate the contact models. For this purpose, a pin-on-disk test apparatus is employed with the capability of measuring tangential and normal forces for a frictional contact. The tests involve pairs of disks and specimens, that is, steel-on-steel and aluminum-on-aluminum contacts. In each case, profilometer measurements are performed on the disk and the Greenwood and Williamson parameters, are determined. Using the parameters, the theoretical estimates of normal and tangential loads are obtained. The theoretical values of tangential-to-normal contact load ratios are compared with those obtained from measurements for various applied normal loads. The tests utilizing a pin-on-disk apparatus showed a partial agreement between the experimentally obtained load ratios and the predicted upper limit confidence interval using the theoretical elastic and elastic-plastic contact. The result suggested that the elastic-plastic formulations provide better predictions of load ratios than the elastic contact formulations.  相似文献   

12.
针对弱刚度工件在定位、夹紧过程中易变形的问题,建立了夹紧顺序与接触力及节点位移增量之间关系的数学模型,给出了各夹紧步骤中工件夹具系统的静力平衡方程;在此基础上,根据最小余能原理及库仑摩擦定律,构建了装夹方案优化模型,提出了基于遗传算法的夹具布局与夹紧顺序同步优化方法。算例结果表明,该方法有效降低了由于装夹所引起的工件变形。提高了加工精度。  相似文献   

13.
After being located on a machine bed, a workpiece will be subject to gravity and cutting forces during the machining operation. In order to keep the locating precision as well as the production safety, it is necessary to maintain the workpiece stability. In this paper, a linear programming method is proposed for stability analysis of the workpiece. Based on the linear approximation of the friction cone, a quantitative criterion is established to verify the workpiece stability in association with the rationality of the clamping sequence, magnitude of clamping forces and clamping placement. This criterion allows designers to plan reasonably the clamping sequence, magnitude of clamping forces as well as clamping placement. Compared with existing methods, the main advantage of this approach lies in that the sophisticated computing of contact forces between fixture elements and the workpiece is avoided. In this work, both friction and frictionless cases can be easily taken into account in stability analysis. Mathematical formulations of the method are given and some numerical tests are finally demonstrated to validate the proposed method.  相似文献   

14.
In conventional machining where a defined tool contacts the workpiece, surface generation is influenced mainly by mechanical factors such as friction, lubrication, contact deformation, temperature, tool geometry, cutting conditions and vibrations. Studies of the mechanism of surface generation are based on the measurement and analysis of such factors. In electrochemical and electrodischarge machining a small gap exists between the tool and the workpiece and the factors which affect these processes are not purely mechanical. To aid the understanding of surface generation in these processes, relocation machining with measuring fixtures was used. Results obtained from a limited number of tests are presented.  相似文献   

15.
Low weight and good toughness thin plate parts are widely used in modern industry, but its flexibility seriously impacts the machinability. Plenty of studies focus on the influence of machine tool and cutting tool on the machining errors. However, few researches focus on compensating machining errors through the fixture. In order to improve the machining accuracy of thin plate-shape part in face milling, this paper presents a novel method for compensating the surface errors by prebending the workpiece during the milling process. First, a machining error prediction model using finite element method is formulated, which simplifies the contacts between the workpiece and fixture with spring constraints. Milling forces calculated by the micro-unit cutting force model are loaded on the error prediction model to predict the machining error. The error prediction results are substituted into the given formulas to obtain the prebending clamping forces and clamping positions. Consequently, the workpiece is prebent in terms of the calculated clamping forces and positions during the face milling operation to reduce the machining error. Finally, simulation and experimental tests are carried out to validate the correctness and efficiency of the proposed error compensation method. The experimental measured flatness results show that the flatness improves by approximately 30 percent through this error compensation method. The proposed method not only predicts the machining errors in face milling thin plate-shape parts but also reduces the machining errors by taking full advantage of the workpiece prebending caused by fixture, meanwhile, it provides a novel idea and theoretical basis for reducing milling errors and improving the milling accuracy.  相似文献   

16.
基于工件的准静态受力分析 ,运用经典Hertz接触理论 ,计算夹具 工件接触区的变形。根据多刚体运动学 ,建立表面加工误差和接触变形的关系 ,对加工误差进行预报。此方法也可用来计算定位基准误差对加工误差的影响。  相似文献   

17.
In fixture design, a workpiece is required to remain stable throughout the fixturing and machining processes in order to achieve safety and machining accuracy. This requirement is verified by a function of the computer-aided fixture design verification (CAFDV) system. This paper presents the methodologies of fixturing stability analysis in CAFDV. A kinetic fixture model is created to formulate the stability problem, and a fixture stiffness matrix (FSM) is derived to solve the problem. This approach not only verifies fixturing stability, but also finds the minimum clamping forces, fixture deformation, and fixture reaction forces. The clamping sequence can also be verified with this approach.  相似文献   

18.
Surface quality is a major factor affecting the performance of a component. The machined surface quality is strongly influenced by the external loads during the fixturing and machining processes. In machining process development, it is highly desirable to predict the quality of a machined surface. For this purpose, an integrated finite element analysis (FEA) model of the entire fixture–workpiece system is developed to investigate the influence of clamping preload and machining force on the surface quality of the machined workpiece. The effects of fixture and machine table compliance (from experimental data), and the workpiece and its locators/clamps contact interaction, and forced vibration, on the machined surface quality are taken into account. This simulation model provides a better understanding of the causes of surface error and a more realistic prediction of the machined surface quality. The deck face of a V-type engine block subjected to fixture clamping and a face milling operation is given as an example. A comparison between the simulation result and experimental data shows a reasonable agreement.  相似文献   

19.
夹紧方案的数学建模及夹紧力的优化设计   总被引:2,自引:0,他引:2  
夹紧变形有两大产生原因:由夹紧副变形导致的工件位置误差以及由夹紧力导致的工件变形。本文主要建立了夹紧副变形与工件位置误差的关系模型;并基于该模型,以最小工件位置误差为目标,实现了夹紧力的优化设计。  相似文献   

20.
In machining process, fixture is used to keep the position and orientation of a workpiece with respect to machine tool frame. However, the workpiece always cannot be at its ideal position because of the setup error and geometric inaccuracy of the locators, clamping force, cutting force, and so on. It is necessary to predict and control the workpiece locating error which will result in machining error of parts. This paper presents a prediction model of a workpiece locating error caused by the setup error and geometric inaccuracy of locaters for the fixtures with one locating surface and two locating pins. Error parameters along 6 degrees of freedom can be calculated by the proposed model and then compensated by either using the “frame transformation” function of a numerical control (NC) system or modifying NC codes in post-processing. In addition, machining error caused by the workpiece locating error can be predicted based on a multi-body system and homogeneous transfer matrix. This is meaningful to fixture design and machining process planning. Finally, a cutting test has shown that the proposed method is practicable and effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号