首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Densification behavior of mixed copper and tool steel powder under cold compaction was investigated. By mixing the yield functions proposed by Fleck et al. and by Gurson for pure powder in terms of volume fractions of Cu powder and the fraction of contact, a new mixed yield function was employed for densification of powder composites under cold compaction. The constitutive equations were implemented into a finite element program (ABAQUS) to compare with experimental data and with results from the model of Kim et al. for densification of mixed powder under cold isostatic pressing and die compaction. Finite element calculations by using the yield functions mixed by the fraction of contact agreed better than those by volume fractions of Cu powder with experimental data.  相似文献   

2.
Near net shape forming of alumina powder by cold die pressing and pressureless sintering was investigated. From experimental data of triaxial compression test of alumina powder, a hyperbolic cap model with a critical state line was proposed for densification of alumina powder at room temperature. For pressureless sintering, the phenomenological model for densification and viscous behavior of alumina powder proposed by Kim and co-workers was used. The constitutive models were implemented into a finite element program (ABAQUS) to simulate densification of alumina powder under cold die pressing and pressureless sintering. Finite element results were compared with experimental data for density distribution and deformation of an alumina powder compact under cold die pressing and pressureless sintering. New conditions of compaction were then proposed to reduce the distortion of the sintered part.  相似文献   

3.
The effects of friction between the powder and the mandrel on densification behavior of metal powder were investigated under cold isostatic pressing. The friction coefficients between the powder and the mandrels with different surface roughness were determined from the relationship between the compaction pressure and the ejection pressure of the mandrel from powder compacts. The elastoplastic constitutive equations based on the yield function of Shima and Oyane were implemented into a finite element program (ABAQUS) to simulate compaction responses of metal powders during cold isostatic pressing. Finite element results were compared with experimental data for pure iron powder under cold isostatic pressing.  相似文献   

4.
A new yield criterion for metal powder compaction based on continuum mechanics has been proposed. It includes three parameters to characterize the geometric hardening of powder compact and strain hardening of incompressible metal matrix. The elasto-plastic finite element method to describe compaction of metal powders has been formulated using the new yield criterion. The values of parameters in the yield criterion could be determined through cold isostatic pressing (CIP). The finite-element method was used to simulate compaction behaviour of copper powders of different shape and mean particle size.  相似文献   

5.
The present work addresses the various ingredients required for reliable finite element simulations of cold isostatic pressing (CIP) of metal powders. A plastic constitutive model for finite deformation is presented and implemented into an explicit finite element (FE) code. The FE implementation is verified so that numerical errors (both temporal and spatial errors) are kept under control. Thereafter, uniaxial die compaction experiments are performed required for determining the material parameters in the constitutive model. Subsequently they are applied for the simulation of a “complex” CIP process. The experimental observations of the complex CIP process were used to validate the overall method by comparing the FE results (final dimensions and average relative density) to the experimental observations. The numerical results (final dimensions and relative density) are in good agreement with the experimental observations.  相似文献   

6.
Densification behavior of tungsten-fiber-reinforced copper powder compacts under hot isostatic pressing was investigated. Hot isostatic pressing was carried out for a bundle of copper-coated tungsten fibers in copper powder. Due to tungsten-fibers and copper coating layers, the densification rate of a tungsten-fiber-reinforced copper powder compact was slower than that of pure copper powder. The constitutive equations by McMeeking and co-workers and by Abouaf and co-workers were implemented into a finite element program (ABAQUS) to analyze densification behavior of tungsten-fiber-reinforced copper powder compacts under hot isostatic pressing. Finite element calculations were compared with experimental results for the variation of relative density with time for copper powder compacts during hot isostatic pressing. Density distributions in copper powder compacts were also investigated by comparing experimental results with finite element calculations.  相似文献   

7.
Densification and deformation of alumina powder under hot pressing and hot isostatic pressing were investigated. Finite element calculations were performed by implementing constitutive equations for grain growth, power law creep and diffusional creep in the user defined subroutine CREEP of ABAQUS. An alumina compact of valve head shape was produced under hot pressing and its forming process was predicted by the finite element calculation. Densification behavior of an alumina powder compact encapsulated by a stainless steel container was also investigated under hot isostatic pressing. Inhomogeneous deformations of an alumina powder compact due to the shield effect of a container during hot isostatic pressing were observed experimentally and predicted by the finite element analysis.  相似文献   

8.
Densification behaviors of mixed metal powder under high temperature were investigated. Experimental data of mixed copper and tool steel powder with various volume fractions of Cu powder were obtained under hot isostatic pressing and hot pressing. By mixing the creep potentials of McMeeking and co-workers and of Abouaf and co-workers originally for pure powder, the mixed creep potentials with various volume fractions of Cu powder were employed in the constitutive models. The constitutive equations were implemented into a finite element program (ABAQUS) to compare with experimental data for densification of mixed powder under hot isostatic pressing and hot pressing. Finite element calculations by using the creep potentials of Abouaf and co-workers agreed reasonably well with experimental data, however, those by the model of McMeeking and co-workers underestimate experimental data as observed in the case of pure metal powders.  相似文献   

9.
以纳米WC-8Co粉末和VC、Cr3C2、TaC晶粒长大抑制剂作为YG8硬质合金原料,采用金属模压预成型+冷等静压处理获得压坯,后经真空烧结制备WC-8Co硬质合金.研究冷等静压工艺对硬质合金收缩率、致密度、硬度的影响,结果表明经冷等静压处理的生坯烧结后的硬质合金具有低收缩率、高致密度和硬度的特点.  相似文献   

10.
In this paper, a shape optimization technique is presented for the cold and hot isostatic pressing of metal powders based on the genetic algorithm (GA) approach. The GA technique is used to obtain the desired optimal compacted component by changing the boundaries of component and verifying the prescribed constraints. The coupled thermomechanical analysis of hot isostatic pressing is employed for metal powders during densification process. The numerical modeling of hot powder compaction simulation is performed based on the large deformation formulation, temperature-dependent cap plasticity model, and frictional contact algorithm. The modified cap plasticity takes the temperature effects into the numerical simulation of highly nonlinear behavior of metal powder. Finally, numerical examples are analyzed to demonstrate the feasibility of proposed optimization algorithm for designing powder components in the cold- and hot-forming processes of powder compaction.  相似文献   

11.
Densification of metal powder under high temperature processing was investigated. Experimental data were obtained for copper powder under hot isostatic pressing, hot pressing and uniaxial creep compression. Theoretical calculations from the constitutive models by McMeeking and co-workers were compared with the experimental data. The agreements between experimental data and theoretical calculations are reasonably good when hydrostatic stress is dominant, but not as good when deviatoric stress increases.  相似文献   

12.
The present technical work reports on the workability performance along with the consolidation behavior of aluminum (Al) and Al–5% silicon carbide (SiC) powder metallurgy composites during cold compaction. An experimental work has been carried out to investigate the powder compaction behavior of Al–SiC metal matrix composites. SiC of particle sizes 120, 75, and 45 μm has been pre-alloyed with Al powders of particle size ranging from ?37 to 75 μm. Various particle size additives of SiC have been used as a second-phase particle in this work with the intension of predicting the mechanical and metallurgical properties of the metal matrix composites studied. The pressure applied for the preparation of compacts have been considered as 220–260 kN in order to prepare the samples of heights in the range of 30 to 32 mm, and the diameter of the compacted sample was 26.11 mm. The densification during compaction is measured by means of the presence of voids in the compacts applying the mass constancy principle. The effect of particle size on the metal matrix composites proposed has been completely investigated under two different stress state conditions such as plane and triaxial.  相似文献   

13.
Hot isostatic pressing of metal powders involves a complex thermal and mechanical coupling process. A constitutive model based on Perzyna’s elastic-viscoplasticity equation was proposed, and a Lagrangian finite element method was applied to analyze the large deformation, nonlinear friction, powder flow, and densification behavior during hot isostatic pressing. The mechanical behavior of the powders was analyzed in terms of stress distribution. For comparison to the simulation results, the density, shape deformation, and residual stress of the specimens were evaluated using Archimedes’ principle, 3D measuring technology, and Empyrean X-ray diffractometer.  相似文献   

14.
This article presents uniaxial compaction experiments of a fine copper powder in a cylindrical die. The compaction process consists of monotonic loading and of loading paths with inserted unloading and reloading cycles. An experimental setup that has been developed for determining the axial and radial stresses during the compaction is described and the calibration of the new device using highly accurate p-finite element simulations of the dies response to internal pressure is shown. The experimental results were subsequently used for the identification of the material parameters of a constitutive model for granular materials recently proposed by Bier and Hartmann [A finite strain constitutive model for metal powder compaction using a unique and convex single surface yield function. accepted for publication by European Journal of Mechanics, Series A/Solids 2006.]. The identification of the elasticity parameters was treated with special attention.  相似文献   

15.
Near-net-shape forming of 316L stainless steel powder is investigated under hot isostatic pressing (HIPing). A stainless steel powder compact and an insert were encapsulated by a stainless steel container and hot isostatically pressed to produce an axisymmetric near-net-shape part. To simulate densification and deformation of a powder compact in the container during HIPing, the constitutive model of Abouaf et al., and that of McMeeking and co-workers were implemented into a finite element analysis. The thickness effect of the container on densification was also studied for the axisymmetric part during HIPing. Densification of a three-dimensional asymmetric part during HIPing was also investigated by comparing finite element calculations with experimental data by Eisen et al.  相似文献   

16.
An approach for simulating microscopic densification behaviour of powder particles in compaction using a finite element method is proposed. In this method, the contacts between powder particles during the compaction are detected, and plastic deformation of the particles is calculated by the finite element method for a porous metal. The finite element mesh is generated by connecting the centres of the particles in contact. It is assumed that the finite elements are porous metals having an average relative density calculated from the volumes of the powder and pore inside the element. The elements are classified into the triangular and quadrilateral ones used in the conventional finite element methods and a linear one for the simple compression. The accuracy of the stiffness for plastic deformation of the particles is improved by applying the finite element method. The calculated plastic deformation of powder particles in plane-strain compaction is compared with that for a model experiment using aluminium rods.  相似文献   

17.
This paper focuses on studying and adapting modeling techniques using the finite element method to simulate the rigid die compaction of metal powders. First, it presents the implementation of the cap constitutive model into ABAQUS FE software using the closest point projection algorithm. Then, an inverse modeling procedure was proposed to alleviate the problems raised by the interpretation of the experimental tests and to more accurately determine the material parameters. The objective function is formed, based on the discrepancy in density data between the numerical model prediction and the experiment. Minimization of the objective function with respect to the material parameters was performed using an in-house optimization software shell built on a modified Levenberg?CMarquardt method. Thus, an integrated simulation module consisting of an inverse optimization method and a finite element method was developed for modeling the powder compaction process as a whole. The simulation and identification module developed was applied to simulate the compaction of some industrial parts. The results reveal that the maximum absolute error between densities is 2.3%. It corresponds to the precision of the experimental method.  相似文献   

18.
This study utilized experimental and finite element methods to investigate the mechanical behavior of aluminum honeycomb structures under compression. Aluminum honeycomb composite structures were subjected to pressing experiments according to the standard ASTM C365. Resistive forces in response to compression and maximum compressive force values were measured. Structural damage was observed. In the honeycomb structure, the cell width decreased as the compressive force increased. Results obtained with finite element models generated using ANSYS Workbench 15 were validated. Experimental results paralleled the finite element modeling results. The ANSYS results were approximately 85 % reliable.  相似文献   

19.
数值模拟在粉末冶金中的应用概况   总被引:5,自引:1,他引:5  
简介数值模拟应用在粉末冶金中的一些基本模型和方法以及近来在粉末压制、注射成形、热等静压成形等领域的研究应用情况  相似文献   

20.
Wrought 6061 Al alloy exhibits the prospective applications in the form of tube extrusions. In this study, billets of 6061 Al alloy were extruded under optimized conditions by a novel technique namely portholes-equal channel angular pressing (P-ECAP) extrusion. This technique is different from the conventional extrusion as the dimension of the product is greater than that of the billet. The extruded tube produced by the method was characterized for their microstructure as well as for their physical and mechanical properties. The tube that was fabricated using P-ECAP die showed significant refinement in microstructure with improved mechanical properties outside the seam joint portion. However, the extrusion loads using porthole die were less compared to that in the conventional method by using columniform billet because of the decrease in billet dimension or extrusion ratio. Furthermore, microstructure at seam joints of 6061 Al alloy extrusion was discussed in detail in this study. Thus, the P-ECAP technique has significant potential for substantial energy saving.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号