首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 87 毫秒
1.
超级电容器用沥青焦基活性炭的制备及其电化学性能   总被引:14,自引:9,他引:14  
采用沥青焦为原料,制备了系列高比表面积活性炭作为超级电容器电极材料。用直流循环充放电、循环伏安及交流阻抗等表征方法比较了沥青焦基超级活性炭和日本可乐丽公司YPl5活性炭的电化学性能。实验结果表明在KOH、H2SO4、(C2H5)4NBF4/碳酸丙烯酯(Propylenecarbonate PC)及(C2H5)4NBF4/乙腈(Acetonitrile)体系中,沥青焦基活性炭的比电容随比表面积增加,其最高值分别为257F/g、228F/g、140F/g、142F/g,均超过了日本活性炭。沥青焦基活性炭电极在KOH体系中的等效串联电阻的体积电阻率与日本炭相差不大;在H2SO4体系中的电阻率均小于日本活性炭;在碳酸丙烯酯体系中的电阻率均大于日本活性炭;在乙腈体系中,活化剂KOH与沥青焦比例为4:l、经800℃活化3h制备的活性炭的电阻率小于日本活性炭。  相似文献   

2.
超级电容器用聚苯胺/活性炭复合电极的研究   总被引:5,自引:0,他引:5  
通过循环伏安法在多孔活性炭表面沉积了聚苯胺膜,并采用扫描电子显微镜、交流阻抗潜以及恒电流允放电技术对聚苯胺、活性炭和聚苯胺/活性炭复合电极进行了研究.结果显示:聚苯胺在活性炭表面形成一层由多孔网状结构组成的均匀的膜.聚苯胺/活性炭复合电极比活性炭电极具有更高的容量,同时比聚苯胺电极具有更好的循环稳定性.聚苯胺/活性炭复合电极的比电容为587F/g,而活性炭电极仅为140F/g.在50次充放电循环后,聚苯胺电极比电容从513降至334F/g,而聚苯胺/活性炭复合电极从415F/g下降为383F/g.  相似文献   

3.
超级电容器用活性炭电极材料的研究进展   总被引:3,自引:3,他引:0  
活性炭因具有制备简单、成本低、比表面积大、导电性好以及化学稳定性高等特点,作为超级电容器电极材料已得到广泛应用.论述了活性炭电极超级电容器的工作原理及活性炭物化性质对超级电容器电化学性能的影响,介绍了活性炭电极材料的最新研究进展,展望了其应用前景,指出寻找新炭源及活化技术、探索活性炭孔结构和表面性质的有效控制手段、开发活性炭复合材料等是该领域今后研究的重点方向.  相似文献   

4.
应用流延涂布方法制备活性炭电极膜片,采用电极膜片层叠技术制造超级电容器.由于使用价廉的粉状活性炭做电极原料,大大提高了电容器的制造效率,为大批量生产和商业化创造了条件.电化学应用测试发现KOH体系超级电容器拥有良好的电化学性能.其能量密度可达1.16 Wh/Kg,5万次充放电循环后能量损耗率小于20 %,且功率特性好,内阻和漏电流小,能够在-20 ℃~80 ℃下正常工作,保存500 d后性能基本上没有衰减.  相似文献   

5.
以碳化后的中间相沥青为前驱体、KOH为活化剂制备了超级电容器用活性炭电极材料,考察了KOH活化温度和碱碳比对所制备的超级电容器用活性炭电极材料的孔隙结构和电化学行为的影响,分析了不同工艺条件下所制备的活性炭电极材料的孔结构和电化学性能的影响因素。结果表明,于800℃活化温度和4∶1碱碳比条件下制备的活性炭电极在1mol/L(C2H5)4NBF4/PC时的最大比电容量可达103.2F/g,活性炭孔结构和比电容量的变化依赖于具体的处理工艺,中孔的含量对活性炭电极的比电容量会产生重要影响。  相似文献   

6.
超级电容器用石墨烯极片的制备和性能   总被引:1,自引:0,他引:1  
袁美蓉  赵方辉  刘伟强  朱永法  王臣 《功能材料》2013,(19):2810-2813,2818
以石墨粉为原料,通过简便的氧化还原法制备了石墨烯。将石墨烯极片在有机电解液体系中组装成超级电容器。利用XRD、SEM对制备的石墨烯电极进行物相和形貌分析。采用恒电流充放电、循环伏安和交流阻抗对所制备超级电容器的电容性能进行了研究。结果表明,石墨烯电极超级电容器比天然石墨制备的超级电容器的比电容有了明显的提高;在电流密度为200mA/g,电压区间为1.25~2.5V下循环888次后比电容保持在45.5F/g,容量保持率在85.5%,表明石墨烯材料制备的电容器具有较好的充放电循环性能。  相似文献   

7.
椰壳活性炭基超级电容器的研制与开发   总被引:15,自引:8,他引:15  
为了开发体积小巧、大功率放电性能优良的超级电容器,选用比表面积1 660m2/g的椰壳活性炭,采用扣式电池结构,通过恒电流充放电、电化学阻抗谱、扫描电子显微镜等方法对其用于超级电容器的性能进行了考察。结果表明,选用椰壳活性炭的最大比容量为79F/g,大功率放电性能优良。继而采用该种椰壳活性炭为电极活性物质,以6m o l/L KOH为电解液,外包装采用涂覆防腐蚀尼龙层的铝箔袋软包装组装了1V、70F的超级电容器,外形尺寸为35mm×43mm×6mm。测试结果表明其比功率密度为170W/kg或330W/L,比能量密度1W h/kg,大功率放电特性较好。  相似文献   

8.
碳纳米管与活性炭超级离子电容器的频率响应   总被引:9,自引:3,他引:6  
分别采用碳纳米管和活性炭作用超级离子电容器的电极材料,应用交流阻抗频谱法,研究了两类超级离子电容器的频率响应特性。结果表明,用碳纳米管作电极,超级离子电容器地频率250mHz以下出现“电荷饱和”;而用活性炭作电极,超级离子电容器在频率为100mHz时仍未出现“电荷饱和”,说明碳纳米管超级离子电容器的频率响应特性优于活性炭超级离子电容器的频率响应特性,但是上述两类超级离子电容器的频率响应特性均比传统介质电容器的频率响应特性差。  相似文献   

9.
静电纺丝是一种新型的非纺织成丝技术,具有适用材料体系广泛、纤维尺寸结构可控、工艺简便等特点,是制备连续纳米纤维的重要方法.静电纺丝技术制备的纳米纤维薄膜因具有巨大的纳米表面和网状孔隙结构可调等优势,在超级电容器领域显示出诱人的应用前景.综述了近年来静电纺丝技术在超级电容器电极材料和隔膜材料方面的研究进展,介绍了碳基、金属氧化物和聚合物电极材料高活性纳米纤维的制备方法及电化学行为,以及静电纺丝无纺布作为隔膜材料显示出的巨大优势,并总结了制约静电纺丝走向商业化的不利因素,如产率低、薄膜强度不足、喷丝不稳定等,最后介绍了近年来静电纺丝技术在结构可控、规模化制备的产业进展,并展望了其在超级电容器领域中的商业化应用前景.  相似文献   

10.
11.
超级电容器用石墨烯的制备与性能研究   总被引:1,自引:0,他引:1  
在高浓度硫酸铵溶液中还原制备了石墨烯,对石墨烯的结构与形貌以及电化学性能进行表征。以硫酸铵作为液相中还原石墨烯的添加剂,在还原时能够有效防止还原石墨烯结块,保持良好的片状结构。还原石墨烯的比表面积达到了615m2/g,内部孔径分布在2.2nm到20nm的范围内,主要集中在2.5nm左右。片状多孔石墨烯最大比电容达到了191F/g,2000次充放电测试之后,比电容依然能保持在首次循环的95%以上。  相似文献   

12.
以无患子残渣为原料,KOH与K2CO3作为活化剂,采用微波炭化和活化两步法制备超高比表面积活性炭,通过正交实验优化活性炭的制备工艺,探讨了碱炭比、活化温度和活化时间对活性炭吸附亚甲基蓝吸附值的影响。利用N2吸脱附实验、XRD、FT-IR等实验技术,对制备的活性炭结构与性能进行了表征。结果表明,在碱炭质量比为4∶1、活化温度800℃、活化时间30 min的条件下,所制备的活性炭对亚甲基蓝吸附值为595 mg/g,BET比表面积为3 479 m2/g,吸附累积总孔容达1.8262 cm3/g,平均孔径为2.0997 nm。  相似文献   

13.
方勤  杨邦朝 《功能材料》2005,36(12):1889-1891
以石油焦为原料,运用化学活化法制备了超级电容器用高比表面积中孔活性炭。利用XRD、SEM和BET对实验制备的中孔炭进行了分析和表征。以实验制备的活性炭为超级电容器电极材料,利用恒流充放电测试对其电容特性进行了研究。结果表明,实验研制的活性炭的比表面积为1733m^2/g,中孔含量达到60.6%,在150mA/g的电流密度下其比容达到180F/g,而且基于实验研制的活性炭的超级电容器具有低内阻和良好的功率特性。  相似文献   

14.
选用微孔和中孔活性炭采用浸渍法负载金属离子,考察在水性电解质中用于超级电容器的活性炭复合电极的电化学性能,探讨活性炭在负载前后的放电容量变化情况.采用低温氮吸附和直流恒流循环实验考察活性炭复合电极的孔结构及电容性能.研究表明:金属Cu、Mn具有比较明显的准电容效应,Co、Ni可提高中孔活性炭的放电容量,而金属Mo、Fe和Y的准电容效应不显著;中孔活性炭负载金属的作用明显强于微孔活性炭;中孔活性炭负载金属Cu时,放电容量随负载量的增加而上升.  相似文献   

15.
用高导电性、高比表面积的工业炭黑(BET表面积为1080m2/g)作为超级电容器的电极材料。利用循环伏安法研究了不同扫描速度对电极电容特性的影响以及不同循环次数对循环伏安曲线的影响,用不同大小电流恒流充放电研究其充放电性能。结果表明:循环伏安曲线为矩形特征,炭黑电极表现出典型的电容行为,扫描速度与比电容基本无关;恒流充放电的电压和时间关系为线性关系,电极的大电流充放电性能良好,电极的循环寿命高。  相似文献   

16.
KOH活化法高比表面积竹质活性炭的制备与表征   总被引:7,自引:0,他引:7  
以竹屑为原料,研究了KOH活化法高比表面积活性炭的制备工艺.分别考察了浸渍比、活化温度、活化时间等工艺参数对产品吸附性能的影响,并提出了可能的活化机理.在所研究的实验条件下,最佳的制备工艺是浸渍比1.0,活化温度800℃,活化时间2h.所得到的活性炭产品的比表面积和孔容可达2996m2/g和1.64cm3/g.该产品附加值高,在吸附领域特别是在双电层电容器的电极材料领域有广阔的应用前景.  相似文献   

17.
无定型氧化锰超级电容器电极材料   总被引:9,自引:0,他引:9  
采用化学共沉淀法制备超级电容器用氧化锰电极材料,借助X射线衍射(XRD)、扫描电子显微镜(SEM)、红外光谱(FT-IR)和BET比表面积分析手段对样品进行表征。结果表明,产物为无定型结构,粒径分布较均匀,约在40~50nm,BET比表面积达到160.5m^2/g。在0.5mol/LK2SO4水溶液中,电位窗口为0~0.8V(vs.SCE)内,通过循环伏安和恒流充放电测试,显示该材料制备的电极具有良好的电容行为和功率特性。在扫描速度为4mV/s时,单电极的比容量达到140F/g。  相似文献   

18.
高比表面积活性炭研制进展   总被引:16,自引:0,他引:16  
王秀芳  张会平  肖新颜  陈焕钦 《功能材料》2005,36(7):975-977,980
高比表面积活性炭具有发达的内部孔隙结构和超强的吸附性能,它作为一种新型材料在许多高效吸附功能材料领域有广阔的应用前景,如化工、制药、食品和环境保护等领域。本文综述了活性炭的制备方法和国内外活性炭的研制状况,展望了活性炭发展趋势,并就目前的两大研究热点高比表面积活性炭在双电层电容器和溶剂回收两大领域的应用进行了着重探讨。  相似文献   

19.
Activated carbon (AC) obtained from the industrial pyrolytic tire char is treated by concentrated nitric acid (AC-HNO3) and then used as the electrode material for supercapacitors. Surface properties and electrochemical capacitances of AC and AC- HNO3 are studied. It is found that the morphology and the porous texture for AC and AC- HNO3 have little difference, while the oxygen content increases and functional groups change after the acid treatment. Electrochemical results demonstrate that the AC-HNO3 electrode displays higher specific capacitance, better stability and cycling performance, and lower equivalent series resistance, indicating that AC obtained from the industrial pyrolytic tire char treated by concentrated nitric acid is applicable for supercapacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号