首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new assay termed the dome disappearance method for classical swine fever virus (CSFV) using FS-L3 cells with serum-free culture medium was developed. The CSFV live vaccine GPE- strain grows well and shows a slight cytopathic effect (CPE) in FS-L3 cells. This CPE results in the disappearance of the unique fluid-filled multicellular domes on a single monolayer of FS-L3 cells. By using this phenomenon, dome disappearance, as a marker of infection, it was possible to determine the titers of CSFV and its neutralizing antibody. The virus titer determined by this method shows a good correlation with that determined by immunochemical and interference methods. Furthermore, the amount of neutralizing antibody measured by this method also correlated with that measured by the Exaltation of Newcastle Disease Virus (END) neutralizing method. The dome disappearance method developed in this experiment is a simple and safe procedure and has the great advantage that bovine serum, which may contain antibody against bovine viral diarrhea virus, is not necessary for the cultivation of FS-L3 cells.  相似文献   

2.
Two classes of homologous recombination mechanism for repair of double-strand breaks (DSBs) have been described in eukaryotes so far. One is conservative and has been explained by the double-strand break repair model (Szostak et al., 1983), whereas the other one is non-conservative and has been explained by the single-strand annealing model (Lin et al., 1984). Here, we will review data supporting the existence of another homologous recombination mechanism for double-strand break repair. We will present the one-sided invasion model that we have proposed to explain this mechanism and discuss its potential implication in various homologous recombination events.  相似文献   

3.
STATEMENT OF PROBLEM: The cone-screw abutment has been shown to diminish micromovement by reducing the burden of component loosening and fracture. However, anecdotal concern for cold welding of cone-screw joints in implant design has been identified as a potential source for lack of retrievability. PURPOSE: This comparative study evaluated the loosening torque, as a percentage of tightening torque, for the ITI Straumann and Astra Tech (3.5 and 4.0 mm diameters) implant systems, which use an 8-degree and 11-degree internal cone, respectively. MATERIAL AND METHODS: Implants and abutments from each system were mounted in a torque device, and a range of tightening torques was applied. Loosening torques were then measured, and the influence of conus angle, interfacial surface area, saliva contamination, and time delay to loosening were all assessed. RESULTS: The loosening torque only exceeded tightening torque at the highest levels, just before component failure, when plastic deformation was expected. For all clinically relevant levels of torque, both in a dry environment and with components bathed in artificial saliva at 37 degrees C, loosening torque was always seen to be 80% to 90% of tightening torque, demonstrating that cold welding does not occur. There was a high correlation between loosening and tightening torque for all systems tested, but no statistical difference when comparing wet versus dry or comparing individual data for each system. CONCLUSIONS: It can be concluded that for clinically relevant levels of tightening torque, no problems are anticipated with respect to retrievability.  相似文献   

4.
Several lines of research suggest that some systemic diseases, often associated with age-related conditions, may present with enhanced prevalences owing to very early influences on human development. This paper describes an analysis of 1264 adult Caucasian patients presenting either with primary open angle or narrow angle/angle closure glaucoma on the one hand, or with age-related cataract on the other. In addition, data on cataracts and primary open angle glaucoma on 254 patients of Caribbean origin and 190 of south east Asian origin were also examined. Patients were classified with respect to sex and season of birth. These variables can play a statistically significant role in the prevalence of glaucoma, which raises the possibility that environmental influences may be involved.  相似文献   

5.
In mammalian cells, chromosomal double-strand breaks are efficiently repaired, yet little is known about the relative contributions of homologous recombination and illegitimate recombination in the repair process. In this study, we used a loss-of-function assay to assess the repair of double-strand breaks by homologous and illegitimate recombination. We have used a hamster cell line engineered by gene targeting to contain a tandem duplication of the native adenine phosphoribosyltransferase (APRT) gene with an I-SceI recognition site in the otherwise wild-type APRT+ copy of the gene. Site-specific double-strand breaks were induced by intracellular expression of I-SceI, a rare-cutting endonuclease from the yeast Saccharomyces cerevisiae. I-SceI cleavage stimulated homologous recombination about 100-fold; however, illegitimate recombination was stimulated more than 1,000-fold. These results suggest that illegitimate recombination is an important competing pathway with homologous recombination for chromosomal double-strand break repair in mammalian cells.  相似文献   

6.
Recently the concept of dissociative identity disorder (formerly known as multiple personality disorder) has attracted increasing public and scientific interest. However, it is rarely diagnosed in the clinical setting. the reported case of a 47-year-old woman with a history of child abuse demonstrates the problems of differential diagnosis. A number of psychopathologic symptoms pointed to a multiple personality disorder, but in the follow-up psychotic symptoms such as delusions, possible hallucinations and bizarre behavior clearly emerged. The differential diagnosis of dissociative identity disorder includes paranoid schizophrenia, as in the case described, borderline personality disorder, hysteria, simulation and the false memory syndrome. Finally, social and cultural factors have to be considered.  相似文献   

7.
Specific recognition of a region of duplex DNA by triplex-forming oligonucleotides (TFOs) provides an attractive strategy for genetic manipulation. Based on this, we have investigated the ability of the triplex-directed approach to induce mutations at a chromosomal locus in living cells. A mouse fibroblast cell line was constructed containing multiple chromosomal copies of the lambdasupFG1 vector carrying the supFG1 mutation-reporter gene. Cells were treated with specific (psoAG30) or control (psoSCR30) psoralen-conjugated TFOs in the presence and absence of UVA irradiation. The results demonstrated a 6- to 10-fold induction of supFG1 mutations in the psoAG30-treated cells as compared with psoSCR30-treated or untreated control cells. Interestingly, UVA irradiation had no effect onthe mutation frequencies induced by the psoralen-conjugated TFOs, suggesting a triplex-mediated but photoproduct-independent process of mutagenesis. Sequencing data were consistent with this finding since the expected T.A-->A.T transversions at the predicted psoralen crosslinking site were not detected. However, insertions and deletions were detected within the triplex binding site, indicating a TFO-specific induction of mutagenesis. This result demonstrates the ability of triplex-forming oligonucleotides to influence mutation frequencies at a specific site in a mammalian chromosome.  相似文献   

8.
The photochemical (lambda < 400 nm) decomposition of some monocyclic and polycyclic nitramines produces .NO2, which can be detected in the respective nitramine crystals at 77 K by EPR (electron paramagnetic resonance). In solutions of perdeutero-dimethylsulfoxide (DMSO-d6) the .NO2 produced by photolytic decomposition of dissolved nitramines can be spintrapped by the solvent to give a radical having the structure CD3-(SO2)-(NO.)-CD3. In this article, we examine this reaction for two nitramines: cyclotrimethylenetrinitramine (RDX) and hexanitrohexaazaisowurzitane (HNIW), which are energetic materials. The decay of the spin-adduct radical (I) follows first-order kinetics for both nitramines studied, having a rate constant (k) of congruent to 7.1 x 10(-4) s-1. The net growth in spin concentration of (1) measured from EPR spectra is fitted by a first-order rate equation taking into account the simultaneous competitive decay rate of spin adduct (I). Using the rate data and EPR spin concentration data, the ratio of free .NO2 produced per parent nitramine molecule is estimated as 1:1 for RDX and 4:1 for HNIW. Biological implications of trapping of .NO2 by dimethyl sulfoxide are discussed.  相似文献   

9.
Intrachromosomal recombination between repeated elements can result in deletion (DEL recombination) events. We investigated the inducibility of such intrachromosomal recombination events at different stages of the cell cycle and the nature of the primary DNA lesions capable of initiating these events. Two genetic systems were constructed in Saccharomyces cerevisiae that select for DEL recombination events between duplicated alleles of CDC28 and TUB2. We determined effects of double-strand breaks (DSBs) and single-strand breaks (SSBs) between the duplicated alleles on DEL recombination when induced in dividing cells or cells arrested in G1 or G2. Site-specific DSBs and SSBs were produced by overexpression of the I-Sce I endonuclease and the gene II protein (gIIp), respectively. I-Sce I-induced DSBs caused an increase in DEL recombination frequencies in both dividing and cell-cycle-arrested cells, indicating that G1- and G2-arrested cells are capable of completing DSB repair. In contrast, gIIp-induced SSBs caused an increase in DEL recombination frequency only in dividing cells. To further examine these phenomena we used both gamma-irradiation, inducing DSBs as its most relevant lesion, and UV, inducing other forms of DNA damage. UV irradiation did not increase DEL recombination frequencies in G1 or G2, whereas gamma-rays increased DEL recombination frequencies in both phases. Both forms of radiation, however, induced DEL recombination in dividing cells. The results suggest that DSBs but not SSBs induce DEL recombination, probably via the single-strand annealing pathway. Further, DSBs in dividing cells may result from the replication of a UV or SSB-damaged template. Alternatively, UV induced events may occur by replication slippage after DNA polymerase pausing in front of the damage.  相似文献   

10.
Apoptotic cells in rat thymus were labeled in situ in paraffin-embedded and frozen tissue sections by ligation of double-stranded DNA fragments containing digoxigenin or Texas red. Two forms of double-stranded DNA fragments were prepared using the polymerase chain reaction: one was synthesized using Taq polymerase, which yields products with single-base 3' overhangs, and one using Pfu polymerase, which produces blunt-ended products. Both types of fragment could be ligated to apoptotic nuclei in thymus, indicating the presence in such nuclei of DNA double-strand breaks with single-base 3' overhangs as well as blunt ends. However, in nuclei with DNA damage resulting from a variety of nonapoptotic processes (necrosis, in vitro autolysis, peroxide damage, and heating) single-base 3' overhangs were either nondetectable or present at much lower concentrations than in apoptotic cells. Blunt DNA ends were present in such tissues, but at lower concentrations than in apoptotic cells. In contrast, in all of these forms of DNA damage, nuclei contained abundant 3'-hydroxyls accessible to labeling with terminal deoxynucleotidyl transferase. Thus, although single-base 3' overhangs and blunt ends are present in apoptotic nuclei, the specificity of the in situ ligation of 3'-overhang fragments to apoptotic nuclei indicates that apoptotic cells labeled in this way can readily be distinguished from cells with nonapoptotic DNA damage. These data are consistent with the involvement of an endonuclease similar to DNase I in apoptosis, which is predicted to leave short 3' overhangs as well as blunt ends in digestion of chromatin.  相似文献   

11.
PURPOSE: To characterize inter- and intra-individual differences in X-ray-induced DNA strand break rejoining kinetics in human peripheral white blood cells (WBC) obtained from 10 healthy volunteers. MATERIALS AND METHODS: The alkaline and neutral versions of the comet assay were used to measure the rate of rejoining of predominantly single-strand breaks (ssb) following exposure to 8 Gy and double-strand breaks (dsb) following 75 Gy. RESULTS: All cells within a population responded in a similar fashion to induction of ssb and dsb; however, a subset of the WBC appeared to rejoin ssb more rapidly. For the 10 individuals examined, the percentage of ssb rejoined by the rapid component(s) was 47 +/- 16% and the rejoining half-time for the slow component was 1.3 +/- 0.4 h. By 24 h after 8 Gy, 4.9 +/- 3.8% of the initial ssb remained. For dsb rejoining, 58 +/- 11% of the initial damage was still present 4h after 75 Gy and by 24 h 32% of the initial level of damage was still detected. Heavily damaged cells present 24 h after 75 Gy varied from 4% to 50% and were excluded from the analysis of repair rates. CONCLUSIONS: Inter-individual variability exceeded intra-individual variability for 2 of 4 endpoints examined for ssb repair, but not for dsb repair. It was concluded that DNA damage measured using the comet assay could identify a range in the X-ray repair responses of WBC from different normal individuals. Whether these differences correlate with differences in cell killing by radiation remains to be determined.  相似文献   

12.
We describe a 66-year-old man who presented initially with acute cholecystitis. He was treated by cholecystostomy and biopsy of the gallbladder mucosa which revealed carcinoma of the gallbladder. Four weeks later a cholecystectomy was performed followed by resection of the common bile duct, common hepatic duct and segments IV and V of the liver and a hepaticojejunostomy. Sixteen months later an abdomino-perineal resection was performed for a moderately differentiated Dukes' stage C carcinoma of the rectum. He is alive and without evidence of recurrence seven years later. Few patients survive for this length of time following resection of either carcinoma of the gallbladder or rectum. This case report demonstrates the value of aggressive surgical treatment in patients with early carcinoma of the gallbladder.  相似文献   

13.
The yield of UV-induced DNA double-strand breaks was studied for white blood cells ("light" fraction) derived from peripheral blood, and from patients with lymphomas, chronic lymphoid leukemia (CLL), and chronic myeloid leukemia (CML). The method employed was constant-field electrophoresis of plug-embedded DNA in agarose gel. Characteristic dose-response curves were obtained for various cell populations. Lymphoid cells, both from healthy subjects and CLL patients, revealed less damage to DNA under UV-irradiation, whereas CML cells were much more affected. Possible interpretation of these results includes species-specific differences in UV-induced DNA damage, as well as sufficient DNA crosslinking, thus interfering with DNA dsbs detection in irradiated cells.  相似文献   

14.
15.
We have used glycerol to study the relationship between hydroxyl radicals, one of the primary radiolytic products, and the production of DNA double-strand breaks in selected E. coli strains. Our results suggest that when bacteria are irradiated at doses up to about 120 Gray, hydroxyl radicals produce DNA lesions, but not double-strand breaks.  相似文献   

16.
Ku protein binds to DNA ends and is a cofactor for the DNA-dependent protein kinase. Both of these components are involved in DNA double-strand break repair, but it has not been clear if they function indirectly, by sensing DNA damage and activating other factors, or if they are more directly involved in the processing and rejoining of DNA breaks. We demonstrate that intermolecular ligation of DNA fragments is highly dependent on Ku under conditions designed to mimic those existing in the cell. This effect of Ku is specific to eukaryotic DNA ligases. Ku protein, therefore, has an activity consistent with a direct role in rejoining DNA breaks and independent of DNA-dependent protein kinase.  相似文献   

17.
PURPOSE: To investigate the role of DNA-dependent protein kinase (DNA-PK) in the rejoining of ionizing radiation-induced DNA double-strand breaks (dsb). MATERIALS AND METHODS: This study employed previously described in vitro assays that utilize nuclei or 'naked' DNA prepared from agarose-embedded cells as a substrate and S-HeLa cell extracts as a source of enzymes. Rejoining of dsb in these assays is absolutely dependent on cell extract and it proceeds, under optimal reaction conditions, to an extent similar to that observed in intact cells. Results were confirmed in a plasmid-based assay for in vitro rejoining of dsb. RESULTS: It is shown that concentrations of wortmannin completely inhibiting DNA-PK activity profoundly affect the rejoining of dsb in vivo, but have no effect on dsb rejoining in vitro. Furthermore, fractionation of cell extracts using ammonium sulphate precipitation, generates protein fractions that are able to support dsb rejoining, despite the fact that they do not contain detectable amounts of either DNA-PKcs or Ku80. Efficient rejoining of dsb in vitro is also observed with extracts of MO59J cells that lack DNA-PK activity. Finally, rejoining of dsb remains unaffected by wortmannin in a plasmid-based assay, and is also detectable with extracts of MO59J cells. CONCLUSIONS: These findings are in contrast with genetic studies demonstrating a requirement for DNA-PK activity for efficient rejoining of dsb in vivo. The difference between in vitro and in vivo results may not be attributed to chromatin structure since wortmannin was without an effect when using nuclei as a substrate. It is speculated that the differences between in vivo and in vitro results can be explained either by assuming the operation of multiple pathways in dsb rejoining, some of which do not require DNA-PK, or by postulating a purely regulatory/damage-sensing role for DNA-PK in intact cells but no direct involvement in dsb rejoining.  相似文献   

18.
19.
DNA double-strand breaks (DSBs) were measured within a 3.2-Mbp NotI fragment on chromosome 21 of cells of a normal human fibroblast cell line. Correct rejoining of DSBs was followed by measuring reconstitution of the original-size NotI fragment, and this was compared to total rejoining as measured by a conventional pulsed-field gel electrophoresis technique (FAR assay). After 80 Gy of particle irradiations with LETs in the range of 7-150 keV/microm, it was found that the repair kinetics was generally slower after irradiation with high-LET particles compared to X irradiation and that a larger proportion of the breaks remained unrepaired after 24 h. On the other hand, the misrejoining frequency as measured by the difference between correct and total rejoining after 24 h did not change with LET, but was approximately the same for all radiations at this dose, equal to 25-30% of the initial breaks. This result is discussed in relation to formation of chromosomal aberrations, deletion mutations and other biological end points.  相似文献   

20.
We have investigated the role of DNA ends during gap repair by homologous recombination. Mouse cells were transfected with a gapped plasmid carrying distinctive ends: on one side mouse LINE-1 repetitive sequences (L1Md-A2), and on the other rat LINE-1 sequences (L1Rn-3). The gap could be repaired by homologous recombination with endogenous mouse genomic LINE-1 elements, which are on average 95% and 85% homologous to L1Md-A2 and L1Rn-3 ends, respectively. Both L1Md-A2 and L1Rn-3 ends were found to initiate gap repair with equal efficiency. However, there were two types of gap repair products--precise and imprecise--the occurrence of which appears to depend on which end had been used for initiation and thus which end was left available for subsequent steps in recombination. These results, together with sequence analysis of recombinants obtained with plasmids having either mouse or rat LINE-1 sequences flanking the gap, strongly suggest that the two DNA ends played different roles in recombinational gap repair. One end was used to initiate the gap repair process, while the other end was involved at later steps, in the resolution of the recombination event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号