首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of cationic surfactants, di‐chain esterquat surfactants (EQs), were synthesized from N‐methyl diethanolamine, hydrochloric acid, ethylene oxide, and caprylic acid, decylic acid, or lauric acid by a three‐step process. The synthesized surfactants were characterized by IR, MS, and 1HNMR. Surface properties, antibacterial activity, and biodegradability of the synthesized surfactants were investigated. The results showed that synthesized EQs exhibit high surface activities and good biodegradability. Further, the synthesized surfactant, N,N‐di‐[O‐decanoyl‐2‐hydroxyethyl]‐N‐hydroxyethyl‐N‐methylammonium chloride, exhibits excellent antibacterial activity against E. coli and S. aureus.  相似文献   

2.
A series of cationic gemini surfactants containing two dimethylalkylammonium chains linked by ethylene glycol bisacetyl spacers were synthesized [Gm‐AnA‐m, G = gemini surfactant, m = 12 (–C12H25), 14 (–C14H29), or 16 (–C16H33), A = acetyl, and n = 2, 3, or 4 is the number of ethylene glycol units in the spacers]. Because of the inductive effect of the oxygen atom in the spacer, acylation can take place using chloroacetyl chloride instead of bromoacetyl bromide which helps to limit the use of environmentally harmful reagents. Critical micelle concentrations were determined using conductivity measurements. The antibacterial activities of the surfactants against Gram‐positive bacterium Staphylococcus aureus and Gram‐negative bacterium Escherichia coli were evaluated from the minimum inhibitory concentration (MIC), minimum bacterial concentration, a time–kill study, and the inhibitory zone. Increasing the length of the spacer did not result in an obvious change of antibacterial activity. However, increasing the length of the alkyl chain apparently increased the antibacterial activity against S. aureus but decreased the antibacterial activity against E. coli. The G12‐A2A‐12 surfactant had the lowest CMC of 1.26 mmol L?1 and exhibited the best antibacterial activity with a MIC of 32 μg mL?1 toward S. aureus and 64 μg mL?1 toward E. coli in the presence of 105 CFU of bacteria. This work indicated that these cationic gemini surfactants have potential applications as antibacterial agents and emulsifiers.  相似文献   

3.
Acrylic acid was crosslinked with N,N′‐methylenebisacrylamide and converted to bioactive hydrogels by neutralization with different amino containing compounds. Several amino containing compounds were used such as 2‐aminopyridine, triethanol amine, hexamethylenetetramine (HMTA), pyridine, and imidazole. The best crosslinker ratio was determined in addition to the maximum absorbed water in different mediums. The antibacterial activity of the prepared gels were examined against examples of Gram‐positive (Staphylococcus aureus) and Gram‐negative bacteria (Escherichia coli) using agar plate method. The study was extended by evaluating one of prepared gels in columns as models for water filters. All prepared gels showed antibacterial action in agar plate method against both bacterium and the column method using one of the prepared gels showed excellent filtration and biocidal action. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
A group of cationic gemini surfactants (bisquaternary ammonium bromides) with different spacer chain lengths (8–6–8, 8–7–8, 8–8–8, 8–9–8) was investigated, paying special attention to antimicrobial and the cytotoxic properties as well as their antimicrobial activity during long‐term storage. It was shown that the compounds investigated exhibit excellent antimicrobial activity against Gram‐positive bacteria (Staphylococcus aureus) and Gram‐negative bacteria (Pseudomonas aeruginosa) as well as antifungal properties (Candida albicans). The gemini surfactants tested had the differential level of cytotoxicity against normal lymphocytes. It was shown that the spacer chain length plays an important role in antibacterial activity and influences the cytotoxicity. The gemini surfactants with shorter spacer chain length, that had higher critical micelle concentration, showed generally weaker antibacterial properties, but on the other hand, these exhibited lower level of cytotoxicity. Furthermore, the aqueous solution of gemini surfactants exhibited the same antimicrobial activity even after 3 months.  相似文献   

5.
Antimicrobial peptides (AMPs) have shown potential as alternatives to traditional antibiotics for fighting infections caused by antibiotic‐resistant bacteria. One promising example of this is gramicidin A (gA). In its wild‐type sequence, gA is active by permeating the plasma membrane of Gram‐positive bacteria. However, gA is toxic to human red blood cells at similar concentrations to those required for it to exert its antimicrobial effects. Installing cationic side chains into gA has been shown to lower its hemolytic activity while maintaining the antimicrobial potency. In this study, we present the synthesis and the antibiotic activity of a new series of gA mutants that display cationic side chains. Specifically, by synthesizing alkylated lysine derivatives through reductive amination, we were able to create a broad selection of structures with varied activities towards Staphylococcus aureus and methicillin‐resistant S. aureus (MRSA). Importantly, some of the new mutants were observed to have an unprecedented activity towards important Gram‐negative pathogens, including Escherichia coli, Klebsiella pneumoniae and Psuedomonas aeruginosa.  相似文献   

6.
The cationic surfactants containing aromatic rings and amide bonds, N,N-dimethyl-N-dodecyl-2-pyrimidinylcarbamoylmethyl ammonium chloride ( a ), N,N-dimethyl-N-dodecyl-2-thiazolylcarbamoylmethyl ammonium chloride ( b ), and N,N-dimethyl-N-dodecyl-phenylcarbamoylmethyl ammonium chloride ( c ), were synthesized and characterized. The surface tension and conductivity values were employed to investigate the absorption and micellization behavior of the three cationic surfactants. The results showed that the synthesized surfactants have shown a low critical micelle concentration (CMC) and a high adsorption efficiency (pC20) compared with the traditional cationic surfactant of N,N-dimethyl-N-dodecyl-N-benzyl ammonium chloride ( BAC-12 ). The aromatic rings of the a , b , and c molecular structures were analyzed using the 1H NMR spectra for electrostatic repulsion effects between hydrophilic headgroups. The size distribution of the micelles was derived using dynamic light scattering (DLS) techniques. In addition, the foaming ability of a , b , c , and BAC-12 was investigated and the antimicrobial activity of a , b , c , and BAC-12 against Escherichia coli, Staphylococcus aureus, and Bacillus subtilis was examined. The effects of amide bonds and aromatic rings on the surface properties and antimicrobial activity of a , b , and c were analyzed and compared with BAC-12 of the same alkyl chain length. The synthesized surfactants exhibited a high surface ability and better antibacterial activity compared with BAC-12 .  相似文献   

7.
New bactericidal polyamides with quaternary ammonium or phosphonium salts were prepared, and their antimicrobial activities were explored. The polyamides were synthesized by the polycondensation of diethyl‐l‐tartrate or chloromethylated diethyl‐l‐tartrate with ethylenediamine in dry absolute ethanol. The polyamides were modified to yield polymers with either quaternary ammonium or phosphonium salts. The polymers were characterized with elemental microanalysis and 1H‐NMR and IR spectra. The antimicrobial activity of the polymers bearing onium salts was studied against Gram‐negative bacteria (Escherichia coli, Pseudomones aeruginosa, Shigella sp., and Salmonella typhae), Gram‐positive bacteria (Bacillus subtilis and Bacillus cereus), and a fungus (Trichophytum rubrum) by the cut‐plug and viable‐cell‐count methods. Although all the polymers showed high antibacterial activity, some had no antifungal activity. The tributyl phosphonium salt of the polyamide was more effective against both Gram‐negative and Gram‐positive bacteria than the triethyl ammonium and triphenyl phosphonium salts of the polyamide. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4780–4790, 2006  相似文献   

8.
Bifunctional aminoalkyldimethylpropylammonium salts (N‐(3‐aminopropyl)‐N,N‐dimethylpentylammonium chloride, N‐(3‐aminopropyl)‐N,N‐dimethyloctylammonium chloride, N‐(3‐aminopropyl)‐N,N‐dimethyldecylammonium chloride, N‐(3‐aminopropyl)‐N,N‐dimethyldodecylammonium chloride) are synthesized and their structure‐dependent antibacterial effect against Gram‐negative Escherichia coli and Gram‐positive Lactococcus lactis is investigated. To this end, resins prepared from bisphenol A diglycidyl ether (2,2‐bis[4‐(glycidyloxy)phenyl]propane) and diethylenetriamine (2,2′‐diaminodiethylamine) as matrix and the bifunctional aminoalkyldimethylpropylammonium salts in a ratio of 6 mol% compared to epoxy components are used. A dependence of antibacterial effect on alkyl chain length of the quaternary ammonium compounds is observed for both species. Furthermore, resins with N‐(3‐aminopropyl)‐N,N‐dimethyldecylammonium chloride in varying concentrations up to 16 mol% for both organisms show a concentration‐dependent antibacterial effect of the quaternary ammonium salt. The antibacterial materials are characterized by differential scanning calorimetry, infrared spectroscopy and rheological studies. © 2013 Society of Chemical Industry  相似文献   

9.
Symmetrical gemini surfactants of cationic series α,ω-alkanediyl bis (dimethyl ammonium bromide) commonly referred as “msm” have been synthesized. Spectral analysis was performed to confirm compound structures and purity. Conductivity and surface tension measurements provide better understanding of the micellization process. Their self-assembly behavior in aqueous solution is also discussed in detail. The antimicrobial efficacy was measured by bacterial and fungal growth inhibition expressed as minimal inhibitory concentration values against five strains of a representative group of microorganisms viz. Bacillus subtilis, Staphylococcus aureus, Klebsiella pneumonia, Salmonella paratyphi B and Aspergillus niger. All of the synthesized surfactants showed antimicrobial activity against them, but at different levels depending on their structures. The surfactants possessing longer alkyl chains (more hydrophobic environment) demonstrated better antimicrobial functionality. The antimicrobial potency was found to be dependent on the representative target microorganism (Gram-positive bacteria > fungi > Gram-negative bacteria), as well as on the ionic nature of the surfactant (cationic), alkyl chain length (m = 12, 16) and spacer length (s = 2, 4, 6) of the synthesized compounds. Gemini surfactants such as 12-2-12 and 12-4-12 were found to be weakly active whereas 16-2-16 and 16-4-16 compounds proved to be the most potent antimicrobial surface-active agents among the synthesized gemini homologues.  相似文献   

10.
Two cationic surfactants, namely, tetradecyl dimethyl benzyl ammonium chloride (TDBAC) and tributyl tetradecyl phosphonium chloride (TTPC) were supplied from the local market and characterized. The adsorption tendency of the two surfactants was estimated from the values of the depression of surface tension of the water at the critical micelle concentration. The studied surfactants were evaluated as antimicrobial agents against sulfate-reducing bacteria. These cationic surfactants showed good antimicrobial activities against the tested microorganisms. It was also found that these compounds are good corrosion inhibitors for carbon steel in 0.5?M HCl at doses of 25?C600?ppm.  相似文献   

11.
The efficacy of a new antimicrobial treatment of textile materials based on the use of 1‐monocaprylin against various species of saprophytic moulds (Alternaria alternate CCM F‐397, Aspergillus niger ATCC 16404, Mucor racemosus CCM 8190, Penicillium ochrochloron CCM F‐158, Trichoderma viridae CCM F‐728), pathogenic moulds (Epidermophyton floccosum CCM 8339, Trichophyton mentagrophytes ATCC 9533, Trichophyton rubrum DSMZ 4167), pathogenic yeasts (Candida albicans ATCC 10231, Candida parapsilosis CCM 8260), Gram‐negative bacteria (Escherichia coli ATCC 11229, Klebsiella pneumoniae ATCC 4352) and Gram‐positive bacteria (Staphylococcus aureus ATCC 6853) was investigated. The testing was carried out according to DIN EN ISO 20645 disc‐diffusions test, using a 2‐layer method. The results showed that 1‐monocaprylin effectively killed all tested bacterial strains and pathogenic microorganisms with an exception of saprophytic moulds only, which were partially resistant. Textiles treated with 1‐monocaprylin reduced the growth of pathogenic, potentially dangerous microorganisms frequently occurring for example on the feet and in the shoes. Practical applications: To prevent microbial contamination leading to degradation of textile materials, various antimicrobial agents aimed at killing or suppressing of microorganism growth are applied. Among others, also MAGs belong to safe and efficient antimicrobial agents. Their application in antimicrobial treatment of textiles may be a suitable alternative to commercially used antimicrobial agents, as these endogenous lipid substances are present almost in all animal and plant tissues and are harmless to human body. The present study has confirmed that MAGs possess a suitable inhibitory activity when applied on textiles and are capable of hindering and even suppressing growth of bacteria and moulds that may occur during storage and use of textiles. The obtained results can be closely related to potential industrial applications of MAGs as effective agents for antimicrobial textiles and lining and insole materials for footwear, including those designed for diabetics.  相似文献   

12.
The antimicrobial polymer/polymer macrocomplexes were synthesized by radical alternating copolymerization of N‐vinyl‐2‐pyrrolidone with maleic anhydride [poly(VP‐alt‐MA)] with 2,2′‐azobis‐isobutyronitrile as an initiator at 65°C in dioxane solutions under nitrogen atmosphere, and interaction of prepared copolymer with poly(ethylene imine) (PEI) in aqueous solutions. The susceptibility of some Gram‐negative (Salmonella enteritidis and Escherichia coli) and Gram‐positive (Staphylococcus aureus and Listeria monocytogenes) bacteria to the alternating copolymer and its PEI macrocomplexes with different compositions in microbiological medium was studied using pour‐plate technique. All the studied polymers, containing biologically active moieties in the form of ionized cyclic amide, and macrobranched aliphatic amine groups and acid/amine complexed fragments, were more effective against L. monocytogenes than those for Gram‐positive S. aureus bacterium. This fact was explained by different surface layer structural architectures of biomacromolecules of tested bacteria. The resulting polymeric antimicrobial materials are expected to be used in various areas of medicine and food industry. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:5841–5847, 2006  相似文献   

13.
The synthesis of two types of imidazole‐based surfactants, [(ROCOCH2MIm)Br] and [(RNHCOCH2MIm)Br], of varying chain lengths (C10, C12 and C16), was conducted in the present work. The synthesis involves an initial reaction of bromoacetic acid with fatty alcohols or fatty amines, followed by quaternization with N‐methyl imidazole. The micellar properties of all the synthesized compounds were determined using surface tensiometry and compared with [(RMIm)Br], a well‐studied alkyl‐substituted imidazole‐based surfactant. Within the same homologous series, a decrease in critical micelle concentration (cmc) was observed with increasing alkyl chain length in all three types of cationic surfactants. Introduction of an ester [(ROCOCH2MIm)Br] or an amide group [(RNHCOCH2MIm)Br] in the alkyl chain lowers the cmc when compared to a cationic surfactant without functional group, [(RMIm)Br]. The synthesized surfactants were also assayed for antimicrobial activities and found to possess good activities against selected strains.  相似文献   

14.
To achieve biocidal properties, a cyclic N‐halamine precursor, 7,7,9,9‐tetramethyl‐1,3,8‐triazaspiro[4.5]‐decane‐2,4‐dione (TTDD), was synthesized and introduced into nanosized polyacrylonitrile fibrous mat by an electrospinning technique. It was rendered antimicrobial by exposure to dilute hypochlorite solution. Synthesis routes and characterization data are presented. Scanning electron microscopy (SEM) demonstrated that the ultrafine fiber possessed average diameter 414 nm (from 240 to 650 nm). The chlorinated nanofibrous composites provided about 4.9 log reductions of both Gram‐positive bacteria Staphylococcus aureus (ATCC 6538) and Gram‐negative bacteria Escherichia coli O157:H7 (ATCC 43895) within 5 min of contact time. This is indicative of promising possible applications in the filtration of water and air. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
Nine different hydrogenated cardanol-based quaternary ammonium compounds including one conventional single-tale single-head surfactant, one bicephalic single-tale double-head surfactant, and seven asymmetric Gemini surfactants were synthetized using a simple process with high yields. Their structures were characterized using 1H NMR, 13C NMR, and high-resolution mass spectral studies. Their surface active properties were evaluated by the wilhelmy plate method at 25 °C and physical parameters like CMC, γCMC, πCMC, C20, τCMC, and Amin were calculated. The Krafft temperature values of C-BP-1, C-BP-4, and C-BP-6 are lower than 0 °C, suggesting high-potential industrial application. All synthesized compounds but C-BP-F exhibit great antimicrobial ability against Gram-positive bacteria (S. aureus [ATCC 25923] and C. glutamicum [ATCC 13032]) while inadequate antimicrobial ability against Gram negative strains (E. coli [ATCC 25922] and P. aeruginosa [ATCC 27853]).  相似文献   

16.
Four novel hydrogels based on chitosan were synthesized via a cross-linking reaction of chitosan with different concentrations of oxalyl bis 4-(2,5-dioxo-2H-pyrrol- 1(5H)-yl)benzamide. Their structures were confirmed by fourier transform infrared X-ray (FTIR), scanning electron microscopy (SEM) and X-ray diffraction. The antimicrobial activities of the hydrogels against two crop-threatening pathogenic fungi namely: Aspergillus fumigatus (A. fumigatus, RCMBA 06002), and Aspergillus niger (A. niger, RCMBA 06106), and five bacterial species namely: Bacillis subtilis (B. subtilis, RCMBA 6005), Staphylococcus aureus (S. aureus, RCMBA 2004), Streptococcus pneumoniae (S. pneumonia, RCMB 000101) as Gram positive bacteria, and Salmonella typhimurium (S. typhimurium, RCMB 000104), and Escherichia coli (E. coli, RCMBA 5003) as Gram negative bacteria have been investigated. The prepared hydrogels showed much higher antimicrobial activities than that of the parent chitosan. The hydrogels were more potent in case of Gram-positive bacteria than Gram-negative bacteria. Increasing the degree of cross-linking in the hydrogels resulted in a weaker antimicrobial activity.  相似文献   

17.
In order to obtain protein-based amphoteric surfactants with antimicrobial properties, N α -lauroyl arginine dipeptides have been prepared by condensation between N α -lauroyl arginine and amino acids which come from a collagen hydrolysate. Some surfactant properties and the minimum inhibitory concentration against Gram positive and Gram negative bacteria have been evaluated. All types of compounds presented a surfactant-like behavior. Furthermore, the compounds described in this paper may be considered as mild preservative or protective substances.  相似文献   

18.
Each year, thousands of patients die from antimicrobial‐resistant bacterial infections that fail to respond to conventional antibiotic treatment. Antimicrobial polymers are a promising new method of combating antibiotic‐resistant bacterial infections. We have previously reported the synthesis of a series of narrow‐spectrum peptidomimetic antimicrobial polyurethanes that are effective against Gram‐negative bacteria, such as Escherichia coli; however, these polymers are not effective against Gram‐positive bacteria, such as Staphylococcus aureus. With the aim of understanding the correlation between chemical structure and antibacterial activity, we have subsequently developed three structural variants of these antimicrobial polyurethanes using post‐polymerization modification with decanoic acid and oleic acid. Our results show that such modifications converted the narrow‐spectrum antibacterial activity of these polymers into broad‐spectrum activity against Gram‐positive species such as S. aureus, however, also increasing their toxicity to mammalian cells. Mechanistic studies of bacterial membrane disruption illustrate the differences in antibacterial action between the various polymers. The results demonstrate the challenge of balancing antimicrobial activity and mammalian cell compatibility in the design of antimicrobial polymer compositions. © 2019 Society of Chemical Industry  相似文献   

19.
In this article, we present a simple method for synthesizing antibacterial cellulose fibers that were modified with a cationic polymer and immobilized silver chloride (AgCl) particles. Relatively simple techniques of graft polymerization and onsite precipitation were used to fabricate the composites. Scanning electron microscopy images, Fourier transform infrared spectroscopy, X‐ray diffraction, thermogravimetric analysis, and energy‐dispersive X‐ray spectroscopy confirmed the immobilization of the AgCl particles. The observed inhibition zone of the immobilized AgCl particle composites indicated that the biocidal silver ions were released from the composites in aqueous solution. Compared with cationic‐polymer‐grafted cellulose fibers or AgCl alone, the cationic polymer/AgCl composites showed excellent antibacterial activity against Gram‐negative Escherichia coli and Gram‐positive Staphylococcus aureus. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42092.  相似文献   

20.
ATP‐competitive inhibitors of DNA gyrase and topoisomerase IV are among the most interesting classes of antibacterial drugs that are unrepresented in the antibacterial pipeline. We developed 32 new N‐phenylpyrrolamides and evaluated them against DNA gyrase and topoisomerase IV from E. coli and Staphylococcus aureus. Antibacterial activities were studied against Gram‐positive and Gram‐negative bacterial strains. The most potent compound displayed an IC50 of 47 nm against E. coli DNA gyrase, and a minimum inhibitory concentration (MIC) of 12.5 μm against the Gram‐positive Enterococcus faecalis. Some compounds displayed good antibacterial activities against an efflux‐pump‐deficient E. coli strain (MIC=6.25 μm ) and against wild‐type E. coli in the presence of efflux pump inhibitor PAβN (MIC=3.13 μm ). Here we describe new findings regarding the structure–activity relationships of N‐phenylpyrrolamide DNA gyrase B inhibitors and investigate the factors that are important for the antibacterial activity of this class of compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号