首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel series of cleavable alkyltrimethylammonium surfactants with different hydrocarbon chain lengths (C8–16) were synthesized. A carbonate break site inserted between the polar head and the hydrocarbon chain makes these compounds hydrolyzable. The reagents used are renewable, (bio)degradable, or reusable. The hydrolysis of these cleavable surfactants will lead to the generation of fatty alcohols and choline, which is an essential biological nutrient. The surface activities in aqueous solution of the synthesized carbonates fulfill the requirement of being good surfactants. In addition, the cleavable compounds containing n-decyl and n-dodecyl chains showed similar or higher antimicrobial activities when compared to a non-cleavable analog.  相似文献   

2.
Novel dicephalic surfactants containing a quaternary ammonium and a guanidine group were synthesized, and the effect of the alkyl chain length on micellization and antimicrobial activity were investigated. Surface tension and conductivity were applied to study the self-aggregation of the amphiphilic molecule in aqueous solution. The results indicated that these compounds reduce the surface tension to a level of 30–36 mN/m at the air/water interface and that there is a characteristic chain length dependence of the micellization process of surfactants. The antimicrobial activity was evaluated against Gram-negative, Gram-positive bacteria and fungi, indicating strong antibacterial activity against tested strains.  相似文献   

3.
The stability of anionic-cationic surfactant solutions and the antimicrobial properties of novel N,N-dimethyl-N-[3-(gluconamide/lactobionamide)]propyl-N-alkylammonium bromides (CnDGPB and CnDLPB), N-methyl-N-hydroxyethyl group-N-[3-(gluconamide)-propyl]-N-alkylammonium bromide (CnMHGPB) and star-shaped gluconamide-type cationic surfactants N-dodecyl-N,N-bis[(3-d-gluconylamido)propyl]-N-alkylammonium bromide (CnDBGB) were investigated. Mixed stability in combination with sodium n-alkylbenzenesulfonate (LAS) was determined via transmittance; stability is achieved when percent transmittance was greater than 90 %. Transmittance results suggest that these cationic surfactants can form stable solutions with anionic surfactants over a broad concentration range. The inhibition activity of C n DBGB is the best among the three kinds of glucocationic surfactants. Antimicrobial activity of C12 surfactants was the best, C14 was the second and C10 was the worst. Moreover, antibacterial activity of glucose-based cationic surfactants was greater than lactose-based cationic surfactants.  相似文献   

4.
A series of novel cationic surfactants were synthesized from the quaternization of triethyl amine and various long chain alkyl halide. The chemical structure of the prepared compounds was confirmed using elemental analysis, FTIR and 1H-NMR spectra. The physical properties of the synthesized surfactants including, electrical conductivity, critical micelle concentration, (CMC) and the degree of ionization of the micelle, (β) were studied. The thermodynamic parameters of micelle formation, standard free energy ΔG m°, enthalpy ΔH m°, and entropy ΔS m° were calculated. The results of the surface parameter determination were correlated with their chemical structures. It was found that the hydrocarbon chain length is the main factor which has an effect on the value of the thermodynamic parameters.
I. AiadEmail:
  相似文献   

5.
A series of novel cationic gemini surfactants [CnH2n+1–O–CH2–CH(OH)–CH2–N+(CH3)2–(CH2)2]2·2Br? [ 3a (n = 12), 3b (n = 14) and 3c (n = 16)] having a 2‐hydroxy‐1,3‐oxypropylene group [?CH2–CH(OH)–CH2–O–] in the hydrophobic chain have been synthesized and characterized. Their water solubility, surface activity, foaming properties, and antibacterial activity have been examined. The critical micelle concentration (CMC) values of the novel cationic gemini surfactants are one to two orders of magnitude smaller than those of the corresponding monomeric surfactants. Furthermore, the novel cationic gemini surfactants have better water solubility and surface activity than the comparable [CnH2n+1–N+(CH3)2–(CH2)2]2·2Br? (n‐4‐n) geminis. The novel cationic gemini surfactants 3a and 3b also exhibit good foaming properties and show good antibacterial and antifungal activities.  相似文献   

6.
Corrosion inhibition of three new synthesized cationic surfactants, N‐(2‐(((Z)‐4‐(pyridin‐4‐yl)but‐3‐en‐1‐yl)amino)ethyl)‐N‐(2‐((E)‐(pyridin‐4‐ylmethylene)amino)ethyl)dodecan‐1‐aminium bromide I(4N), N1,N2‐didodecyl‐N1‐((Z)‐4‐(pyridin‐4‐yl)but‐3‐en‐1‐yl)‐N2‐(2‐((E)‐(pyridin‐4‐ylmethylene)amino)ethyl)ethane‐1,2‐diaminium bromide II(4N) and 1‐dodecyl‐4‐((E)‐((2‐(dodecyl(2‐(dodecyl((Z)‐4‐(1‐dodecylpyridin‐1‐ium‐4‐yl)but‐3‐en‐1‐yl)ammonio)ethyl)ammonio)ethyl)imino)methyl)pyridin‐1‐ium bromide IV(4N) on carbon steel was investigated by weight loss, electrochemical impedance spectroscopy and polarization measurements. Results show that the synthesized cationic surfactants inhibit corrosion of carbon steel in 1 M HCl. The inhibitive action occurs by virtue of adsorption on the metal surface following a Langmuir adsorption isotherm model. Polarization curves reveal that the investigated cationic surfactants can be classified as mixed inhibitor types. The variations in the corrosion inhibition efficiency between three cationic surfactants are correlated with their chemical structures, with more hydrophobic surfactants yielding higher inhibition efficiency.  相似文献   

7.
In this study, different cationic surfactants were prepared by esterification with bromoacetic acid of different fatty alcohols, i.e., dodecyl, tetradecyl and hexadecyl species. The products were then reacted with diphenyl amine, and the resulting tertiary amines were quaternized with benzyl chloride to produce a series of quaternary ammonium salts. The metallocationic surfactants were prepared by complexing the cationic surfactants with nickel and copper chlorides. Surface tension of these surfactants were investigated at different temperatures. The surface parameters including critical micelle concentration (CMC), maximum surface excess (Γ max), minimum surface area (A min), efficiency (PC20) and effectiveness (π CMC) were studied. The thermodynamic parameters such as the free energy of micellization ( $\Updelta G_{\text{mic}}^{^\circ }$ ) and adsorption ( $\Updelta G_{\text{ads}}^{^\circ }$ ), enthalpy ( $\Updelta H_{\text{m}}^{^\circ }$ ), ( $\Updelta H_{\text{ads}}^{^\circ }$ ) and entropy ( $\Updelta S_{\text{m}}^{^\circ }$ ), ( $\Updelta S_{\text{ads}}^{^\circ }$ ) were calculated. FTIR spectra and 1H-NMR spectra were obtained to confirm the compound structures and purity. In addition, the antimicrobial activities were determined via the inhibition zone diameter of the prepared compounds, which were measured against six strains of a representative group of microorganisms. The results indicate that these metallocationic surfactants exhibit good surface properties and good biological activity on a broad spectrum of microorganisms.  相似文献   

8.
A class of novel cationic Gemini imidazolium surfactants containing amide groups as the spacer were synthesized from ethylenediamine and 1-bromoalkane(C8, C10, C12, C14, C16) by N-alkylation to get N,N′-dialkyl ethylenediamine (1a–e), 1a–e was further reacted with chloroacetyl chloride by N-acylation to get N,N′-(ethane-1,2-diyl)bis(2-chloro-N-alkylacetamide) (2a–e), which was further reacted respectively with 1-methyl imidazole by quaternized to form the surfactant molecule, N,N′-((ethane-1,2-diyl)bis(alkyl-azanediyl)bis(2-oxoethane-2,1-diyl)) bis(1-methyl-1H-imidazol-3-ium) dichloride. The structures of intermediates (1a–e) and (2a–e) were characterized by IR and 1H NMR. The structures of the surfactants (3a–e) were characterized by IR, 1H-NMR and 13C-NMR and element analysis. The critical micelle concentrations (CMC) of 3a–e were determined by the conductivity method at 25 °C. The CMC values decreased with increasing the length of the hydrophobic chain. The surfactants (3a–e) showed good foaming stability, emulsion ability and wetting ability. The surfactants (3a–e) also have good antimicrobial activity against Staphylococcus aureus, Escherichia coli and Bacillus subtilis.  相似文献   

9.
In this study, a series of cationic silicone surfactants SiQCnCl containing ester groups and double long-chain alkyls (n = 9, 11, 13, 15, and 17) were synthesized by microwave irradiation and characterized using infrared Fourier transform (FTIR), 1H nuclear magnetic resonance (1H NMR), and thermogravimetric analysis (TGA). Surface activity and adsorption of these surfactants were investigated by measuring the equilibrium surface tension. The critical micelle concentration (CMC) decreased with increasing alkyl length of SiQCnCl at 25 °C and so did the corresponding surface tension at the CMC (γCMC ). The aggregation behavior in aqueous solutions was also investigated systemically through transmission electron microscopy (TEM) and dynamic light scattering (DLS). Spherical or ellipsoidal-like aggregates with diameters ranging from 300 to 900 nm were observed. It is also shown that the cationic silicone surfactants exhibit certain antibacterial properties against Staphylococcus aureus but slightly poor to Escherichia coli. The morphological structure of SiQC15Cl-treated cotton fabrics was observed using scanning electron microscopy (SEM), which showed that the surface became neat and smooth. What is more, the finished cotton fabrics maintained some antibacterial properties with improved softness, which may provide a more comfortable and healthy lifestyle. This work may also be helpful to the design and application of functional cationic silicone surfactants.  相似文献   

10.
A series of novel iminium surfactants were prepared through quaternization of different prepared fatty Schiff bases with benzyl chloride. The chemical structures were confirmed using FTIR, 1H-NMR and mass spectroscopy. The surface properties and biological activity of these surfactants were investigated. The surface parameters including critical micelle concentration (CMC), maximum surface excess (Γmax) and minimum surface area (A min), Efficiency (PC20) and Effectiveness (πCMC) as well as the free energy of micellization ( $ \Updelta G_{\text{mic}}^{\text{o}} $ ) and adsorption ( $ \Updelta G_{\text{ads}}^{\text{o}} $ ) were calculated. It was found that the prepared compounds have good surface and biological activity.  相似文献   

11.
In this work, 1‐halo‐3‐(cyclohexyloxy)propan‐2‐ol ( 3a/3b ) were reacted with N‐methylimidazole ( 4 ) or pyridine ( 5 ) to yield the respective 3‐(3‐(cyclohexyloxy)‐2‐hydroxypropyl)‐1‐methyl‐1H‐imidazol‐3‐ium ( 6a/6b ) or pyridinium ( 7a/7b ) surface‐active ionic liquids (SAIL). The self‐aggregation behavior of these ionic liquids (IL) was evaluated by conductometric and tensiometric methods. The thermal stability and size of the micelles were determined by thermogravimetric analysis and dynamic light scattering studies, respectively. The investigated IL were found to exhibit very low cytotoxicity as evaluated by MTT (3‐(4, 5‐dimethylthiazol‐2‐yl)‐2, 5‐diphenyltetrazolium bromide) assay on the C6 glioma cell line, indicating that the investigated SAIL can be considered for biological applications like drug and gene delivery. The conventional IL 3‐methyl‐1‐octyl imidazolium bromide ( C 8 mimBr ) was used for comparison in property evaluations.  相似文献   

12.
Silicone-based amphiphilic surfactants were synthesized as anti-foaming agents through a polycondensation reaction between chlorine-terminated polysiloxane and polyethers. Poly(ethylene glycol) (PEG) and poly(propylene glycol) of different molecular weights were used. The structures of these tri-block co-polymers were characterized by FTIR, 1H NMR and ESI–MS analysis. Surface tension, foam height and foam destruction properties of these co-polymers were determined. Spectroscopic analysis confirmed that bonding of polyether to polysiloxane was successful and two types of different tri-block co-polymers were obtained. The anti-foaming efficiency of these co-polymers tended to increase with an increase in the hydrophilic character of the co-polymer chains. The synthesized tri-block co-polymers, which can be used as anti-foaming agents in paper-coating applications of poly(vinyl acetate-co-butyl acrylate) latexes, showed low surface tension values, fast liquid drainage and efficient foam destruction. PEG 200-b-PDMS-b-PEG 200 was determined to be the most efficient anti-foaming agent among all co-polymers synthesized.  相似文献   

13.
A series of cationic polyurethane surfactants [PQ8-18] were synthesized by the reaction of alkyl bromoacetate (namely: octyl-, decyl-, dodecyl-, tetradecyl-, hexadecyl-, and octadecyl bromoacetate) as quaternizing agents and modified polyurethane contains tertiary amine species. Modified polyurethane was prepared by the reaction of toluene diisocyanate (TDI) and triethanol amine monomercaptoacetate. The chemical structures of the prepared surfactants were confirmed using elemental analysis, Fourier transform infrared spectroscopy (FTIR), and Proton nuclear magnetic resonance (1H NMR) spectroscopy. The molecular weight measurements of the prepared polymers showed that the segments of each polymer contain average 10 units of the urethane-triethanol amine mercaptoacetate. The surface activities of the prepared surfactants including: surface tension (γ), effectiveness ( πcmc), concentration at micelle formation (CMC), efficiency (Pc20), maximum concentration at the interface (Γmax), and the average area occupied by each surfactant molecule at the interface at equilibrium ( A min) of surfactants solutions were established at 25°C. The surface tension and the critical micelle concentration values of the prepared surfactants were gradually decreased by the gradual increase of their alkyl chain length. The prepared cationic surfactants showed efficient activity as inhibitors for dissolution of carbon steel in an acidic medium and also as a biocide against the growth of bacteria, fungi, and yeast.  相似文献   

14.
Neutral and cationic series of new trimeric β-hydroxy amino or ammonium surfactants were synthesized via a two-step process involving the Williamson etherification and regioselective oxirane ring opening with primary and tertiary amines, which afforded good to excellent yields. The synthesized compounds were obtained in high purity by a simple purification procedure on column chromatography. The critical micelle concentration (CMC), effectiveness of surface tension reduction (γ CMC), surface excess concentration (Γ), and area per molecule at the interface (A) were determined and values indicate that the cationic series is characterized by good surface-active and self-aggregation properties. The antimicrobial activities are reported for the first time against representative bacteria and fungi for trimeric compounds. The antimicrobial potency was found to be dependent on the target microorganism (Gram-positive bacteria > fungi > Gram-negative bacteria), as well as both the neutral or ionic nature (cationic > neutral) and alkyl chain length (tri-C12 > tri-C18 > tri-C8) of the compounds. The tri-C8 and tri-C18 compounds were found to be almost inactive and the tri-C12 compounds, the most potent antimicrobial surface-active agents from the synthesized series. The trimeric C12 cationic compound was found to be comparable to benzalkonium chloride against Gram-positive bacteria and fungi, in vitro. The antimicrobial effectiveness of this new compound and the facile two-step procedure for synthesizing it with an excellent overall yield (92%) provide a cost effective trimeric gemini surfactant.
Ricardo J. GrauEmail:
  相似文献   

15.
In recent years, trimeric surfactants have created excitement in the surfactant field because of their properties, which have been found to be better than monomeric or dimeric homologues. Only a limited number of trimeric surfactants have been synthesized and studied so far, probably owing to the difficulty in synthesis. In this article, we synthesized some novel star‐shaped trimeric cationic surfactants based on the alkylation of the 3 hydroxyl groups of the phloroglucinol nuclei as a core (i.e., spacer) with 3 dodecyl or 3 octyl groups (as tails) for the surfactant. The chemical structures were confirmed by nuclear magnetic resonance, Fourier transform infrared, mass spectrometry, and elemental analysis; also the critical micelle concentration was determined by electrical conductivity measurements. These surfactants were used in the synthesis of mesoporous silica nanoparticles by the sol–gel method. The silica particles shape and size were determined using field emission scanning electron microscopy and high‐resolution transmission electron microscopy images. Furthermore, the corrosion inhibitor capability of these surfactants was investigated by monitoring the corrosion rate of iron sheets in 0.5 M hydrochloric acid in the presence and in the absence of different surfactants at 45°C based on the weight loss method. We have used cetyltrimethylammonium bromide (CTAB) as a positive control, the obtained results showed a high inhibition efficiency at very low concentrations, and the prepared trimeric surfactants exhibited a higher anticorrosion efficiency than the CTAB surfactants.  相似文献   

16.
Two new cationic surfactants, N-(dodecanoyl(ethylammonio)carbonothioyl)-N-ethylbenzenaminium bromide and N-(dodecanoyl(ethylammonio)carbonothioyl)-N-ethyl-N-phenylbenzenaminium bromide were synthesized with a high yield by the reaction of appropriate amounts of lauryl chlorides, potassium thiocyanate, amine and alkyl halides. The structures were characterized by 1H-NMR, 13C-NMR, FTIR and UV–Vis spectroscopy. Cyclic, square wave and differential pulse voltammetry were used to investigate the electrochemical fate of both surfactants over a wide pH range.  相似文献   

17.
Decyl and dodecylamino tetrachloroferrates were synthesized and characterized using Fourier-transform infrared spectroscopy (FTIR), elemental analysis, X-ray diffraction (XRD), nuclear magnetic resonance (1H-NMR), and atomic absorption spectroscopy (AAS). The surface properties of the cationic surfactants including critical micelle concentration, effectiveness, minimum surface area, and maximum surface excess were determined using surface tension measurements. The effectiveness of surface tension reduction (πcmc) was found to increase as the hydrophobic chain length increases with values of 30 and 34 mN m−1 for C10 and C12, respectively. Moreover, the effect of temperature on micellization was determined over the range of 35–55 °C. Thermodynamic parameters (ΔG°, ΔS°, and ΔH°) were calculated and the results indicate a spontaneous process for both micellization and adsorption. The nanoparticles (NC10 and NC12) of the prepared surfactants were obtained using the ball mill technique. The particle size and morphology of the nanoparticles were determined using transmission electron microscope measurements. The antibacterial study of the nanoparticle surfactants revealed their strong efficiency against fungi and different pathogenic bacteria compared with the original surfactants.  相似文献   

18.
A series of novel cationic gemini surfactants were synthesized from corresponding amido-amines in a single step reaction. The amido-amines were obtained from long chain carboxylic acids and 3-N,N-dimethylamino-1-propyl-amine with excellent isolated yield (up to 95 %). All the synthesized quaternary ammonium compounds (QACs) were further investigated for surface active properties. The critical micelle concentration (CMC) and the effectiveness of surface tension reduction were determined. The surface tension measurements of newly synthesized gemini surfactants showed good water solubility, and low CMC values, had great efficiency in lowering the surface tension and a strong adsorption at the air/water interface than the corresponding monomeric surfactants. Further, the antibacterial activity of the synthesized QACs against both Gram-positive and Gram-negative bacteria was also investigated.  相似文献   

19.
Two series of diquaternary cationic surfactants designated as E9Nm and E11Nm having two different alkyl chains in their chemical structure were synthesized. The chemical structures of these surfactants were confirmed using elemental analysis, FTIR and 1H‐NMR spectra. The surface activities of the different surfactants were determined using surface and interfacial tension at 25 °C. The surface parameters including: critical micelle concentration, effectiveness, efficiency, maximum surface excess and minimum surface area were determined. The surface activities of the cationic surfactants were correlated with their chemical structure. The surface activities of the surfactants increased with increasing the hydrophobic chain length. The adsorption and micellization tendencies of the surfactants in solution were determined using the free energies of adsorption and micellization. The synthesized surfactants were evaluated as biocides against bacteria and fungi. Biocidal activity data showed that a gradual increase in the hydrophobic chain length of the surfactant molecules gradually increases the efficiency of these surfactants as biocides.  相似文献   

20.
Symmetrical gemini surfactants of cationic series α,ω-alkanediyl bis (dimethyl ammonium bromide) commonly referred as “msm” have been synthesized. Spectral analysis was performed to confirm compound structures and purity. Conductivity and surface tension measurements provide better understanding of the micellization process. Their self-assembly behavior in aqueous solution is also discussed in detail. The antimicrobial efficacy was measured by bacterial and fungal growth inhibition expressed as minimal inhibitory concentration values against five strains of a representative group of microorganisms viz. Bacillus subtilis, Staphylococcus aureus, Klebsiella pneumonia, Salmonella paratyphi B and Aspergillus niger. All of the synthesized surfactants showed antimicrobial activity against them, but at different levels depending on their structures. The surfactants possessing longer alkyl chains (more hydrophobic environment) demonstrated better antimicrobial functionality. The antimicrobial potency was found to be dependent on the representative target microorganism (Gram-positive bacteria > fungi > Gram-negative bacteria), as well as on the ionic nature of the surfactant (cationic), alkyl chain length (m = 12, 16) and spacer length (s = 2, 4, 6) of the synthesized compounds. Gemini surfactants such as 12-2-12 and 12-4-12 were found to be weakly active whereas 16-2-16 and 16-4-16 compounds proved to be the most potent antimicrobial surface-active agents among the synthesized gemini homologues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号