首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
气相生长炭纤维   总被引:3,自引:2,他引:1  
0 前言 炭纤维(CF)是近几十年来发展非常迅速的新型材料,它具有高强度、高模量、高导电、导热、密度小、耐腐蚀等特性,是一种重要的工业材料。自从一九五九年美国联合碳化物公司(UCC)第一次用人造丝生产出工业碳纤维,继而日本分别于1961年、1969年研制成功聚丙烯腈基炭纤维(PAN--CF)和沥青基炭纤维(Pitch—CF),成为当今世界碳纤维产量最大的国家。随后,英、法等国也兴起生产CF热,从而极大地促进了CF的发展。  相似文献   

2.
气相生长炭纤维   总被引:3,自引:1,他引:2  
本文在参阅大量文献资料的基础上,系统地阐述了气相生长炭纤维的发展方向、制备方法(基极播种法、气相流动法)、生长机理(扩散控制机理、两步生长机理、碳化物机理、三步生长机理)、特性及用途。  相似文献   

3.
气相生长纳米炭纤维的研究进展   总被引:14,自引:5,他引:14  
综述了当前气相生长纳米炭纤维的研究现状,对纳米炭纤维的制备方法、结构特征、性能和应用前景进行了概述,并简述了本研究小组采用改进流动催化剂法制备的纳米炭纤维。  相似文献   

4.
FeCl3催化生长脱油沥青基气相生长炭纤维   总被引:1,自引:1,他引:0  
以脱油沥青(DOA)为碳源,氯化铁为催化剂,在氩气和氢气的混合气氛下利用化学气相沉积法(CVD)制备了不同形貌的气相生长炭纤维(VGCFs)。讨论了在温度为1100℃时,不同的反应时间(分别为10min,20min,25min,30min和40min)对产物形貌和结构的影响。利用场发射扫描电镜(FE-SEM)、高分辨透射电镜(HRTEM)、X-射线衍射(XRD)和拉曼(Raman)光谱,对不同工艺参数下合成的产物进行了结构表征。结果表明:随着反应时间的增加,气相生长炭纤维的形貌由弯曲变得相对平直,进而相互贯穿;当反应时间为10min和20min时,气相生长炭纤维的直径分布在1.0μm~1.2μm之间;当反应时间为25min,30min和40min时,气相生长炭纤维的直径分布范围分别为250nm~300nm,350nm~400nm,700nm~800nm。另外,还观察到了V型的气相生长炭纤维。  相似文献   

5.
用溶液共混法制备了气相生长炭纤维/聚苯乙烯(VGCF/PS)导电气敏复合材料.VGCF可以在基体中均匀的分散,显著地改善复合材料的电性能.复合材料在多种有机蒸气中都有很好的气敏性.同时,气敏响应程度受复合材料中炭纤维的含量和蒸气温度的影响.  相似文献   

6.
讨论了在负压沉积条件下基体法制备气相炭纤维时,催化剂种类和反应温度的变化对气相生长炭纤维形态的影响。通过实验发现温度和催化剂的种类对气相生长炭纤维的形态有较大的影响。在同一温度下,分别采用铁基催化剂和镍基催化剂生长出的炭纤维具有相当大的差异,这种差异与溶解在金属催化剂液相中的碳原子从金属液界面的析出模式直接相关,当整个胞晶界面都均匀地析出碳原子时为实心炭纤维,而主要沿胞晶界面的外环析出时为中空炭纤维;在实验条件下铁基催化剂生成的是实心纤维而镍基催化剂生成的是中空纤维。即使采用同一种镍基催化剂,在不同的反应温度下,也将生成不同形状的纤维。在低温下生成的是中空纤维,而在高温下生成的是树枝状的二次分叉纳米纤维。同样,铁基催化剂在低温下生成均匀光滑的连续纤维,而高温下生成的是较细且具有分叉结构的纤维。更进一步的机理分析表明气相生长炭纤维的这种分叉形态与头部的金属催化剂液相的稳定形态相关。铁基与镍基催化剂的金属形态在低温下是相对稳定的,但温度升高后,催化剂液相界面形态变得不稳定,进而导致产生分岐结构,故生成了分叉的炭纤维。  相似文献   

7.
采用微波化学气相沉积法一步合成了热解炭包覆磷酸铁锂/气相生长炭纤维复合正极材料. 借助X射线衍射仪、场发射扫描电子显微镜、高分辨透射电镜和电化学测试仪等测试手段研究了不同制备温度对材料晶体结构、显微形貌和电化学性能的影响. 结果表明, 当制备温度由500℃升至600℃时, 磷酸铁锂主晶相的颗粒尺寸没有发生明显变化, 而原位VGCF的网络程度却明显增加, 材料的放电比容量随之提高; 当制备温度进一步升高到700℃时, 磷酸铁锂颗粒异常生长现象加剧, VGCF直径较大且粗细不均, 材料的电化学性能变差. 研究发现, 当温度为600℃时, 材料表现出较优的电化学性能, 25℃在0.2C、0.5C、1C和3C倍率下的放电比容量分别可达163、159、153和143mAh/g.  相似文献   

8.
Fe催化PAN炭纤维原位生长纳米炭纤维   总被引:4,自引:2,他引:4  
为了研究气相生长纳米炭纤维在炭/炭复合材料制备中的应用,采用均热式化学气相沉积技术,以针刺PAN炭纤维薄毡为基体,二茂铁为催化剂前驱体,丙烯为炭源,氮气为载气,在炉压1.0kPa-1.3kPa,沉积温度880℃、920℃下进行了Fe催化PAN炭纤维原位生长纳米炭纤维的实验。经不同时间沉积后的样品在扫描电镜(SEM)下进行观察,发现880℃时沉积4h后在PAN炭纤维周围生成大量的原位生长纳米炭纤维,而在920℃时因催化剂失效导致热解炭对Fe催化剂颗粒包覆,形成颗粒状热解炭。  相似文献   

9.
以气相生长炭纤维含浸酚醛树脂后经炭化及石墨化处理,制成炭/炭复合材料。观察了不同纤维百分含量的复合材料在升温过程的微细结构及物性之变化,探讨了其强度及电性的变化,并以扫瞄式电子显微镜(SEM)观察破断表面,观察各种复合材料经不同温度处理后之破坏行为。研究结果显示,以气相生长炭纤维所制复材经温度处理后,可以改善其抗弯强度及导电性,最佳纤维含量质量分数为0.5%。超过此比率后,制成之复合材料无论是空孔率或强度皆呈下降。  相似文献   

10.
以甲烷为碳源,硫酸亚铁为催化剂前驱体,通过化学气相沉积在石墨基板上制得了空心锥状炭纤维.采用扫描电子显微镜、X射线衍射、激光拉曼光谱、热失重等分析手段,以平直炭纤维为参照,对比研究了空心锥状炭纤维的微观结构特征.实验结果表明:空心锥状炭纤维由众多空心锥并串联而成,单个空心锥底面直径约1μm,锥高为几百nm;径向平面内三个底面直径约1μm,空心锥呈三角形紧密挟接;轴向方向相邻空心锥由单根纤维连接,形成的单束空心锥状炭纤维直径为约2~3 μm.与平直炭纤维相比,空心锥状炭纤维微观结构有序度较高,层间距较小,微晶尺寸较大.  相似文献   

11.
用不同催化剂制备纳米炭纤维的生长机理   总被引:10,自引:0,他引:10  
研究了以Fe或Ni的催化剂采用有机物催化热解法制备的纳米炭纤维的形貌和结构。发现在两种情况下纳米炭纤维的生长机理安全不同;以Fe为催化剂纳米炭纤维基本符合气-液-固(VLS)催化生长机制(也称溶解扩散机制),而以Ni为催化剂纳米炭纤维则符合固相催化生长机制。  相似文献   

12.
用裂解气相色谱法研究了炭纤维表面化学。与XPS相结合,裂解色谱法可以反映炭纤维表面整个氧化层的状况。氧化后的炭纤维经500℃裂解,色谱图中出现C3以内的气态烃及甲醛、丙酮等含氧化合物,表明炭纤维氧化后表面存在脂肪族结构。炭纤维的氧化方法或氧化时间不同,在其表面形成的化学结构也不同。  相似文献   

13.
以镍为催化剂,通过控制碳源气体乙炔的流速,在1 013 K-1 053 K温度下,制备了纤维截面形状在生长过程中由扁平形变为圆形的螺旋炭纤维,同时螺旋直径也相应的由4.2 μm变化为6.0 μm,这种变截面螺旋炭纤维的发现,为微机械系统提供了一种新型弹簧.提出了变截面螺旋炭纤维的生长机理,认为催化剂颗粒的各向异性不仅影响螺旋炭纤维螺径的大小,还影响纤维的截面形状.随着生长过程中反应条件的改变,催化剂各向异性也发生改变,长方形催化剂既可以生长扁平形也可以生长圆形截面螺旋形炭纤维,但是立方形催化剂只能生长圆形截面螺旋形炭纤维.该机制的提出不仅有助于加深对双螺旋炭纤维生长本质的认识,还对指导螺旋形炭纤维的控制生长具有重要意义.  相似文献   

14.
气相催化裂解法制备微米级螺旋形炭纤维的研究   总被引:23,自引:8,他引:15  
以商用乙炔为碳源,镍板为催化剂,含硫化合物为助催化剂,通过气相催化裂解法(VCC)制得了微米级螺旋形炭纤维。通过对影响微螺旋形炭纤维生长因素研究。发现将镍板直立放置于石英管中,可以提高螺旋形炭纤维的收率。同时发现反应温度为710℃~800℃,C2H2/H2=1:3。含硫化合物的流量为1.0mL/min~1.2mL/min时,有利于规整螺旋纤维的生成,通过调节N2的流量,可以获得螺径不同的炭纤维。气体总流量约200mL/min时可制得螺径约4μm的规整炭纤维;气体总流量约150mL/min时可获得螺径约20μm的炭纤维。利用扫描电子显微镜(SEM)考察了螺旋纤维的微观形貌,发现所得的纤维几乎为双螺旋,同时在螺旋纤维生长的先端常观察到由弯曲纳米级纤维形成的绒状物。  相似文献   

15.
CVD法制备微旋管状炭纤维的微观形貌   总被引:14,自引:6,他引:8  
采用化学气相沉积(CVD)法,使溶有少量杂质的乙炔在自制的过渡金属催化剂和S/P助剂的作用下热分解,合成了结构类似于DNA的微旋管状炭纤维,且具有很好的再现性。微旋管状炭纤维是由两根炭纤维规则地二重旋郑匹合而成旋管,其直径约5um。乙炔和氢气的比例及温度对产量及微观形貌有很大的影响。  相似文献   

16.
采用一种改进的化学气相沉积法在炭纤维表面制备碳纳米管。为了提高炭纤维表面的润湿性能,炭纤维在浸渍之前先在CVD设备中在真空下973 K的高温处理,然后在硝酸和浓硫酸体积比为3∶1的混合酸中酸处理30 min。而改进的化学气相沉积法关键在于让催化剂的还原步骤和碳纳米管的生长步骤同时进行。这样通过减小过渡金属元素与炭纤维之间的接触时间从而降低了它们之间的相互扩散,在确保了炭纤维本身的力学性能下降程度明显小于用普通化学气相法制备的情况下生长出长且茂密的碳纳米管阵列。另外,经过对工艺参数的优化发现当用乙醇作溶剂,Fe(NO3)3.9H2O溶度为100 mmol/L,氢气和碳源气体比值为4/1,而生长时间为30 min时得到最好的碳纳米管阵列。  相似文献   

17.
采用化学气相沉积工艺在炭纤维表面生长了碳纳米管,并观察了它的微观形貌,且对其影响因素进行了初步研究.结果表明:纤维表面的纵向沟槽可以负载催化剂粒子,是生长碳纳米管的物理基础;催化剂的浓度太高,金属粒子容易团聚长大,所得碳纳米管的管径较大;而催化剂浓度太低,则不能在炭纤维整个表面均匀生长碳纳米管;最佳的催化剂溶液的浓度是0.05mol/L的硝酸钴.比较了铁、钴、镍三种过渡金属催化剂,从形成的碳纳米管的质量来看,钴催化剂最佳.  相似文献   

18.
以甲烷为碳源,硫酸亚铁为催化剂前驱体,通过化学气相沉积在石墨基板上制得毛线状炭纤维。扫描电子显微镜观察得知所制炭纤维具有毛线状结构,由许多直径更小的子纤维交叉合并而成。单束毛线状炭纤维的直径为4μm-8μm。高分辨透射电子显微镜显示构成纤维的碳层排列不平直,存在偏转角,有序排列的碳层被分割成许多有序微晶区域。进一步采用X射线衍射和激光拉曼光谱等分析手段对其微观结构进行表征,表明毛线状炭纤维中碳层排列有序度较高,石墨微晶尺寸较大(La≈5nm),层间距较小(d002=0.340nm)。推测毛线状炭纤维生长机理符合“吸附-扩散-析出”过程,形成毛线状结构主要由催化剂颗粒直径决定。  相似文献   

19.
聚丙烯腈基炭纤维的制备   总被引:11,自引:11,他引:0  
采用丙烯腈(AN)与衣糠酸(IA)自由基溶液共聚合,以偶氮二异丁腈(AIBN)为引发剂,在二甲基亚砜(DMSO)中合成了聚丙烯腈肪丝溶液,经湿法纺丝制得聚丙烯腈(PAN)原丝。在原丝牵伸的最后一般用CoSO4水溶液浸渍改性。利用SEM、TEM和热稳定化过程研究等方法进行对比研究改性前后纤维的结构与性能。结果表明:CoSO4能催化PAN原丝的热稳定化、环化反应,缩短预氧化时间,并能提高最终炭纤维的机械性能。  相似文献   

20.
黄麻纤维经预氧化和炭化后制备出低成本炭纤维。采用差示扫描量热仪(DSC)研究黄麻纤维在空气和氩气中的热行为。采用傅立叶变换红外光谱仪(FTIR)、元素分析仪、X射线衍射仪(XRD)研究预氧化过程中黄麻纤维的化学结构和晶体结构,采用扫描电子显微镜(SEM)研究黄麻纤维的形貌变化。最佳的预氧化温度范围为250~340℃。在250℃黄麻纤维发生显著的氧化反应,CO官能团强度也达到最大值。同时,纤维素晶态结构消失并出现一新的环化结构。随着温度由250℃升高到340℃,CO官能团强度逐渐减弱而环化结构逐步发展。黄麻纤维基碳纤维(JBCFs)的拉伸强度与环化结构的特征峰值成正比,与CO官能团强度无关。黄麻纤维基碳纤维(JBCFs)的最大拉伸强度达到(200.4±41.0)MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号