首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对遥感高分辨率光谱图像的特点,提出了一种将纹理信息与光谱信息相结合的分类算法。对传统的局部二值模式纹理提取方法(LBPV)进行改进,并应用到高分辨率图像的土地覆盖分类中。结果表明,加入LBPV纹理特征的分类算法具有很好的空间连续性以及较高的分类精度。  相似文献   

2.
3.
史廷光  卫星 《信息技术》2023,(5):126-130
为解决图像分类精准度较低问题,提出基于卷积神经网络的高光谱图像分类算法。利用虚拟化样本降低分类难度,通过标准化均值差法加强凸显每个像素间曲线波动特征。构建光谱特征提取模型,通过卷积神经网络建立分类处理模型并确定整体分类流程,实现光谱图像的分类。实验结果表明,在同种数据集下,所提算法的分类精准度较为理想。且在训练样本较少的情况下,其应用效果也较好,能够为高光谱图像深入处理提供可靠的理论基础。  相似文献   

4.
高光谱空谱一体化图像分类研究   总被引:1,自引:0,他引:1  
高晓健  郭宝峰  于平 《激光与红外》2013,43(11):1296-1300
高光谱图像分类是遥感图像处理技术中的一个热点,提高分类精度是目前一个重要研究方向。常规的高光谱图像分类技术主要关注于如何更好地利用光谱空间的分类信息,往往忽视图像空间域信息。本文提出了一种基于空谱一体化处理的高光谱图像分类方法,在利用数据进行自身光谱特征分类的同时采用区域生长法和二值形态学法相结合的空间域有效信息对光谱分类结果进行补充。实验证明本方法能提高高光谱图像分类精度。  相似文献   

5.
陈燕 《长江信息通信》2021,34(12):23-25
为改善识别技术中存在的部分缺陷,提高识别木材的能力,减少木材原料的浪费,提出了高光谱图像纹理增强方法提高木材识别能力的研究。通过木材图像的采集与预处理,获取灰度矩阵的纹理特征参数;建立高光谱图像纹理增强识别模型,基于模型的权重,实现木材特征的融合;选择图像的自适应波段,确定图像中的K-L散度;通过近红外高光图谱识别木材。实验结果证明,此种木材识别方法,较传统方法相比,识别结果的反射率与速率较高,能够在较短时间内完成木材的识别,且识别结果的准确率更高。  相似文献   

6.
7.
侯榜焕  姚敏立  贾维敏  沈晓卫  金伟 《红外与激光工程》2017,46(12):1228001-1228001(8)
高光谱遥感图像具有特征(波段)数多、冗余度高等特点,因此特征选择成为高光谱分类的研究热点。针对此问题,提出了空间结构与光谱结构同时保持的高光谱数据分类算法。考虑高光谱图像的物理特性,首先对图像进行加权空谱重构,使图像的空间结构信息自动融入光谱特征,形成空谱特征集;对利用最小二乘回归模型保存数据集的全局相似性结构的基础上,加入局部流形结构正则项,使挑选的特征子集更好地保存数据集的内在本质结构;讨论了窗口大小和正则参数对分类精度的影响。对Indian Pines、PaviaU和Salinas数据集的实验表明,该算法得到的特征子集的总体分类精度达到93.22%、96.01%和95.90%。该算法不仅充分利用了高光谱图像的空间结构信息,而且深入挖掘了数据集的内在本质结构,从而得到更有鉴别性的特征子集,相比传统方法明显提高了分类精度。  相似文献   

8.
现如今高光谱图像分类广泛应用于遥感图像的分析。高光谱图像像素级分类是利用高光谱图像的主要特点——丰富的光谱信息,对地面物体进行逐像素的高精度类别划分。通过对高光谱遥感图像独特的高光谱信息分析,从算法研究方面,对目前高光谱图像的像素级分类的研究进展和对今后的研究方主要从辅助方法、机器学习方法、深度学习方法三个方面总结高光谱图像分类领域的研究现状。未来高光谱分类算法的发展方向将更好的结合高光谱图像的特性,形成完整的深度学习系统。  相似文献   

9.
王丽  王威  刘勃妮 《红外技术》2020,42(10):969-977
针对高光谱图像邻近波段相关性强的特点,结合粒子群优化算法的快速寻优能力,提出一种基于谱间相关性的高光谱图像稀疏分解算法.将高光谱图像分组为参考波段图像和普通波段图像,参考波段图像采用粒子群寻优找到最优原子,实现稀疏分解.普通波段图像的最优原子由两部分构成,一部分原子从参考波段图像的最优原子继承而来,继承个数由普通波段图像与参考波段图像的谱间相关性确定,其余原子则由粒子群搜索得到.对高光谱数据集进行稀疏分解,验证算法的分解效率,结果表明,在重构图像精度相当的条件下,稀疏分解速度比正交匹配追踪算法快约18倍.  相似文献   

10.
高光谱遥感图像分类已被公认为是高光谱数据处理的基础性和挑战性任务之一,其最终目标是给影像中的每个像元赋予唯一的类别标识。针对传统高光谱遥感图像分类方法只依靠单一特征进行分类的问题,提出一种基于空谱多特征融合的分类策略。首先在光谱域上利用主成分分析法PCA降维,得到前3个主成分数据,然后通过多视图策略对PCA降维后的数据分别提取局部二值模式LBP、方向梯度直方图HOG与Gabor特征,将其输入到多视图支持向量机进行分类。所提方法在Indian Pines数据集上进行验证,实验结果表明,所采用的分类策略相较于传统只利用单一特征进行分类的方法分类精度更高。  相似文献   

11.
基于多重分形分析的图像边缘检测算法   总被引:4,自引:0,他引:4  
本文提出了一种基于多重分形分析的边缘检测算法。该算法通过定义在图像灰度级上的测度,计算图像中每一个象素点的奇异性和它的多重分形谱,然后根据多重分形谱,提取图像的边缘信息。经试验表明,该算法具有良好的边缘检测效果,并能突出主要的图像边缘细节信息。  相似文献   

12.
唐婷  潘新 《光电子.激光》2022,33(5):488-494
随着深度学习的不断发展,基于深度学习的机器 视觉方法被广泛应用,其中,卷积神 经网络(convolutional neural network,CNN)对高光谱图像(hyperspectral imagery,HSI ) 分类有着显著的效果。传统卷积网络中卷积核的采样位置是固定的,不能根据HSI中复杂的 空间结构而改变,忽略了数据在空间分布上的特征,为了提高高光谱图像分类在实际应用中 的性能,本文提出了一种基于可变形卷积的高光谱图像分类方法,考虑到HSI高维度的特性 , 将可变形卷积从2D引伸到3D,从而更好地提取3D空间上的特征。本文结合双分支双注意机制网络(double- branch dual-attention mechanism network,DBDA)的网络结构和3D可变形卷积,在Indi an Pines(IP)和Botswana(BS)2个数据集上进行了实验。实验结果表明,本文的方法在 综合精度(overall accuracy, OA) 、平均精度(average accuracy, AA)、KAPPA评价标准上均获得了更好的分类准确 率,相较于次优算法,OA提高了0.15%—0.23%,AA提高了0.21%, KAPPA提高了0.000—0.001。  相似文献   

13.
袁芊芊  谢维信 《信号处理》2022,38(12):2594-2605
面向高光谱图像分类的许多深度学习算法中,由于提取的空谱特征表示鉴别性不足,其模型的分类性能有待提高。针对该问题,本文提出了一种基于空谱注意力机制及预激活残差网络的高光谱图像分类算法。首先,设计了基于空谱注意力机制的空谱特征提取模块,对空谱特征进行重校准,为空谱特征在后续联合学习时能专注于更具辨别力的通道和空间位置提供保证;其次,设计了基于预激活残差网络的空谱特征联合学习模块,其中预激活残差网络改进了原始残差构建块的网络结构,从而能在利用注意力机制重校准的空谱特征的联合学习时捕获更具鉴别性的深层空谱特征,以提高分类器的分类性能。实验结果表明,和已有的一些高光谱图像分类算法相比,所提出的算法的分类准确率更高,表明该算法能有效地获得判别能力更强的空谱特征表示。   相似文献   

14.
为了提高高光谱图像的分类精度,提出了一种基于多尺度卷积神经网络的高光谱图像分类算法.首先,利用等距特征映射算法处理高光谱数据,以挖掘数据的非线性特性,保持数据点的内在几何性质;然后,构建以标记像元为中心的训练图像块,训练多尺度卷积神经网络;最后,利用softmax分类器预测测试像元的标签.提出的方法在Indian Pines、University of Pavia和Salinas scene高光谱遥感数据集上进行分类实验,并与CNN、R-PCA CNN、CNN-PPF、CD-CNN等算法进行性能比较.实验结果表明,在3个数据集上提出的方法的总体识别精度分别达到98.51%、98.64%和99.39%,与CNN算法相比分别提高了约8.35%、6.37%和7.81%.本文提出的方法无论是在分类精度还是Kappa系数上都优于另外4种方法,是一种较好的高光谱遥感数据分类方法.  相似文献   

15.
为了提高图像分类的准确率,解决多层感知器(MLP )收敛速度缓慢等问题,提出了一种基于生物地理学优化-MLP(BBO-MLP)和纹理特征的 图像分类算法。首先,从图像库中选取 3类不同的图片,对图像分类算法运行环境进行建模;其次,选取角二阶矩(U NI)、熵(CON)、惯性矩(ENT)和 相关性(CDR)4个纹理参数构建一个四维特征矩,根据用户提供的类别号和图像 的纹理特征向量 生成训练样本文件;然后,将提取的数据作为MLP的输入数据,为MLP定义一个评估栖息地的 误差适应度函数并对适应度函数进行全局优化,利用BBO算法训练MLP,得到分类模型;最后 ,利用训练好的MLP对图像进行分类,并引入二次反馈机制进一步提高算法性能。实验结果 表明,与PSO、GA、ACO、ES和PBIL等优化算法相比,本文的BBO-MLP算法具有较高的分类正 确率。  相似文献   

16.
杨新锋  胡旭诺  粘永健 《红外与激光工程》2016,45(2):228003-0228003(4)
高光谱图像庞大的数据量给存储与传输带来巨大挑战,必须采用有效的压缩算法对其进行压缩。提出了一种基于分类的高光谱图像有损压缩算法。首先利用C均值算法对高光谱图像进行无监督光谱分类。根据分类图,针对每一类数据分别采用自适应KLT(Karhunen-Love transform)进行谱间去相关;然后对每个主成分分别进行二维小波变换。为了获得最佳的率失真性能,采用EBCOT(Embedded Block Coding with Optimized Truncation)算法对所有的主成分进行联合率失真编码。实验结果表明,所提出算法的有损压缩性能优于其它经典的压缩算法。  相似文献   

17.
基于多波段谱间预测的高光谱图像无损压缩算法   总被引:7,自引:0,他引:7  
孙蕾  罗建书 《电子与信息学报》2007,29(12):2876-2879
该文提出一种基于多波段谱间预测的高光谱图像无损压缩方案。首先,充分考虑到随着高光谱图像谱间分辨率的提高,其谱间相关性也越来越强烈,推导出由多个波段对当前波段做线性预测的预测器系数,然后给出快速计算求解预测器系数的算法。对AVIRIS图像进行压缩,实验结果表明,该算法压缩比高,运算速度快,具有极高的实用价值。  相似文献   

18.
张因国  陶于祥  罗小波  刘明皓 《红外技术》2020,42(12):1185-1191
为了减少高光谱图像中的冗余以及进一步挖掘潜在的分类信息,本文提出了一种基于特征重要性的卷积神经网络(convolutional neural networks,CNN)分类模型。首先,利用贝叶斯优化训练得到的随机森林模型(random forest,RF)对高光谱遥感图像进行特征重要性评估;其次,依据评估结果选择合适数目的高光谱图像波段,以作为新的训练样本;最后,利用三维卷积神经网络对所得样本进行特征提取并分类。基于两个实测的高光谱遥感图像数据,实验结果均表明:相比原始光谱信息直接采用支持向量机(support vector machine,SVM)和卷积神经网络的分类效果,本文所提基于特征重要性的高光谱分类模型能够在降维的同时有效提高高光谱图像的分类精度。  相似文献   

19.
高光谱成像技术在近十几年里实现了飞跃式的发展。高光谱图像分类的应用受到广泛关注,其分类精度的提升是当前研究的重点。高光谱图像分类是利用不同地物的诊断性吸收特征区分地物类别。传统的高光谱图像分类仅利用图像的光谱特征,分类效果不明显。近些年的研究表明,同时分析地物光谱特征和空间分布能有效提升分类精度。首先总结了众多空谱联合分类方法,依据空谱信息融合阶段的不同,将空谱联合分类分为预处理的分类、综合处理的分类和后处理的分类,简要介绍了深度学习在空谱联合分类中的实现方法,最后对空谱联合分类的研究前景进行了展望。  相似文献   

20.
高光谱图像(hyper spectral imagery,HSI)分类已成为探测技术的重要研究方向之一,同时也在军事和民用领域得到广泛运用.然而,波段数目巨大、数据冗余、空间特征利用率低等因素已成为高光谱图像分类的挑战,且现有的高光谱分类大多利用可见光或短波红外高光谱数据分类.针对这些问题,本文提出了一种基于光谱和空间特征的K-means分类方法.首先提取空间特征,然后将光谱与空间特征相结合并降维,最后引入K-means算法得到较普通K-means更佳的分类结果.并将此算法运用在长波红外的高光谱图像分类中.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号