首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The laminar free convection heat transfer from an isothermal horizontal cylinder of elliptical cross-section confined between two adiabatic walls is investigated by the Mach-Zehnder interferometry technique. The ellipse major axis is vertical, and the minor to major axis ratio is kept constant to 0.53. This paper focuses on the effect of wall spacing and Rayleigh number variation on the local and average free convection heat transfer coefficient from the cylinder surface. The local and average Nusselt numbers were determined for the Rayleigh number range of 9 × 10 2 to 3.2 × 10 3 and wall spacing to cylinder minor axis ratios of 1.9, 2.3, 2.67, 3.17, 3.8, 4.6, 6.12, 8, 13, ∞. Results are indicated with a single correlation that gives the average Nusselt number as a function of the ratio of the wall spacing to cylinder minor axis and the Rayleigh number. There is an optimum distance between the walls in which the Nusselt number is maximum. The experiment was also carried out on a cylinder of circular cross-section with the same periphery and length of the elliptic cylinder to allow a comparison with the results of other research.  相似文献   

2.
Natural convection heat transfer from an isothermal horizontal fin attached to a cylinder, confined between two adiabatic walls of constant height is investigated by the Mach–Zehnder interferometry technique. This study is focused on the effect of a perforated fin attached to the bottom of a cylinder while the vertical position of the cylinder (Y ) changes between two walls with a constant distance of W measuring 1.5 times the cylinder diameter. The cylinder's average Nusselt numbers are determined for three ratios of vertical position to its diameter, Y /D = 0.5, 1.5, 2, and 3. The Rayleigh number ranges from 4.5 × 103 to 1.2 × 104. The distance between the walls is chosen to be 1.5 D, that is, an optimum distance at which the Nusselt number is maximum. The effect of the perforated fin on free convection heat transfer is investigated and compared with other works. Results show outstanding enhancement in heat transfer, with a minimum result of 40% and maximum of 90%. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21041  相似文献   

3.
Natural convection between a square outer cylinder and a heated elliptic inner cylinder has been studied numerically. The inner and outer walls are maintained at temperatures Th and Tc, respectively, with Th > Tc. Lattice Boltzmann method (LBM) has been used to investigate the hydrodynamic and thermal behaviors of the fluid at various vertical positions of the inner cylinder for different Rayleigh numbers ranging from 103 to 106. The results show that streamlines, isotherms, and the number, size and formation of the cells strongly depend on the Rayleigh number and the position of inner cylinder. The changes in heat transfer quantities have also been presented.  相似文献   

4.
The effect of conduction of horizontal walls on natural convection heat transfer in a square cavity is numerically investigated. The vertical walls of the cavity are at different constant temperatures while the outer surfaces of horizontal walls are insulated. A code based on vorticity–stream function is written to solve the governing equations simultaneously over the entire computational domain. The dimensionless wall thickness of cavity is taken as 0.1. The steady state results are obtained for wide ranges of Rayleigh number (10Ra < 106) and thermal conductivity ratio (0 < K < 50). The variation of heat transfer rate through the cavity and horizontal walls with Rayleigh number and conductivity ratio is analyzed. It is found that although the horizontal walls do not directly reduce temperature difference between the vertical walls of cavity, they decrease heat transfer rate across the cavity particularly for high values of Rayleigh number and thermal conductivity ratio. Heatline visualization technique is a useful application for conjugate heat transfer problems as shown in this study.  相似文献   

5.
The effects of height and radius ratio with a Newtonian fluid have been investigated numerically to determine heat transfer by natural convection between the sphere and vertical cylinder with isothermal boundary conditions. The inner sphere and outer vertical cylinder were heated and cooled in a steady change of temperature. Calculations were carried out systematically for a range of the Rayleigh numbers to determine the average Nusslet numbers which are affected by the geometric ratio parameters (HR and RR) on the flow and temperature fields. The governing equations, in terms of vorticity, stream function and temperature are expressed in a spherical polar coordinate system. Results of the parametric study conducted further reveal that the heat and flow fields are primarily dependent on the Rayleigh number and height and radius ratio, for a Prandtl number of 0.7, with the Rayleigh number ranging from 103 to 106, and the height and radius ratio varying from 1.2 to 5.0. Above all, the specification of different convective configurations has a significant effect on the average heat transfer rate across the composite annulus gap.  相似文献   

6.
The effects of eccentricity and geometric configuration with a Newtonian fluid have been investigated numerically to determine heat transfer by natural convection between the sphere and vertical cylinder with isothermal boundary conditions. The inner sphere and outer vertical cylinder were heated and cooled in a steady change of temperature. Calculations were carried out systematically for a range of the Rayleigh numbers to determine the average Nusselt numbers which are affected by the geometric ratio (HR:RR) and eccentricity (ε) parameters on the flow and temperature fields. The governing equations, in terms of vorticity, stream function and temperature are expressed in a spherical polar coordinate system. Results of the parametric study conducted further reveal that the heat and flow fields are primarily dependent on the Rayleigh number, eccentricity and geometric configuration, for a Prandtl number of 0.7, with the Rayleigh number ranging from 103 to 106, the three eccentricities and two geometric configurations. Above all, the specification of different convective configurations has a significant effect on the average heat transfer rate across the composite annulus gap.  相似文献   

7.
Natural convection heat transfer from two horizontal cylinders in the air was investigated experimentally and numerically. Two cylinders were spaced at 1.3, 1.8, and 2.7 cylinder diameters horizontally. The experiments were carried out by large lateral shear interferometry (LSI) for various Rayleigh numbers in the range of 103 to 104. Large LSI is common path interferometry with the advantages of simple structure, strong antivibration, and fewer required optical components. It is not necessary for LSI to perform a complex algorithm to restore wavefront with a large shear amount. Simple and infinite fringe interferograms of the cylinders heated from ambient temperature 282.15 to 723.15 K were obtained. A numerical simulation was carried out with ANSYS-Fluent 18.0. The influence of two factors, the distance between the cylinders, and the Rayleigh number, on the heat transfer of two horizontal cylinders was examined. The average Nusselt number and local Nusselt number were determined from the experimental results and numerical results, respectively, and the two results were in good agreement. The rising direction for the plume flow pattern of each horizontal cylinder was no longer simply vertically upward but was inclined toward the central symmetry axis of the two cylinders. In addition, the heat transfer from a cylinder increased with the cylinder spacing at any Rayleigh number.  相似文献   

8.
In this study Control Volume based Finite Element Method is applied to solve the problem of natural convection heat transfer in an enclosure filled with nanofluid. The important effect of Brownian motion and thermophoresis has been included in the model of nanofluid. The inner sinusoidal and outer circular walls are maintained at constant temperatures while the two other walls are thermally insulated. The heat transfer between cold and hot regions of the enclosure cannot be well understood by using isotherm patterns so heatline visualization technique is used to find the direction and intensity of heat transfer in a domain. Effects of thermal Rayleigh number (Ra), buoyancy ratio number (Nr) and Lewis number (Le) on streamline, isotherm, isoconcentration and heatline are examined. The results indicate that the average Nusselt number decreases as buoyancy ratio number increases until it reaches a minimum value and then starts increasing. As Lewis number increases, this minimum value occurs at higher buoyancy ratio number.  相似文献   

9.
Numerical calculations are carried out for natural convection induced by a temperature difference between a cold outer square enclosure and a hot inner circular cylinder. A two-dimensional solution for unsteady natural convection is obtained, using the immersed boundary method (IBM) to model an inner circular cylinder based on the finite volume method for different Rayleigh numbers varying over the range of 103–106. The study goes further to investigate the effect of the inner cylinder location on the heat transfer and fluid flow. The location of the inner circular cylinder is changed vertically along the center-line of square enclosure. The number, size and formation of the cell strongly depend on the Rayleigh number and the position of the inner circular cylinder. The changes in heat transfer quantities have also been presented.  相似文献   

10.
Conjugate heat transfer in partially open square cavity with a vertical heat source has been numerically studied. The cavity has an opening on the top with several lengths and three different positions. The other walls of cavity were assumed adiabatic. The heat source was located on the bottom wall of cavity and it has got a width such as Printed Circuit Boards (PCB). Steady state heat transfer by laminar natural convection and conduction is studied numerically by solving two dimensional forms of governing equations with finite difference method. The results were reported for various governing parameters such as Rayleigh number (103 ≤ Ra ≤ 106), conductivity ratio, opening position, opening length, PCB distance and PCB height. The numerical results were discussed with streamlines, isotherms, Nusselt number and velocity profiles on x- and y-directions. It is found that ventilation position has a significant effect on heat transfer.  相似文献   

11.
Natural convective heat transfer from the exposed top surface of an inclined isothermal cylinder, with a circular cross section, mounted on a flat adiabatic base plate, has been numerically investigated. The cylinder is mounted normal to the flat adiabatic base plate. The numerical solution has been obtained by solving the dimensionless governing equations, subject to boundary conditions, using the commercial finite-volume method-based code FLUENT. The flow has been assumed to be symmetrical about the vertical center-plane through the cylinder. Results have only been obtained for Prandtl number of 0.7, which is the value existing in the application that originally motivated this study. The simulations consider Rayleigh numbers between 103 and 107, inclination angles between 0º and 180º, and dimensionless cylinder diameters between 0.25 and 1. The effects of dimensionless diameter, Rayleigh numbers, and inclination angles on the mean Nusselt number for the top exposed surface of the cylinder have been studied. Empirical correlations for the heat transfer rates from the top exposed surface of the cylinder have been derived.  相似文献   

12.
The effects of an inclined magnetic field and heat generation on unsteady free convection within a square cavity filled with a fluid-saturated porous medium have been investigated numerically. The top and bottom horizontal walls of the enclosure are adiabatic whereas the vertical walls are kept at constant but different temperatures. The physical problems are represented mathematically by a set of partial differential equations along with the corresponding boundary conditions. By using an implicit finite-difference scheme, namely the ADI method (Alternative Direction Implicit), the non-dimensional governing equations are numerically solved. The influential parameters are the Rayleigh number Ra, the inclination angle γ of the magnetic field relative to the gravity vector g, the Hartmann number Ha and the heat generation parameter Q. In the present study, the obtained results are presented in terms of streamlines, isotherms and average Nusselt number along the hot wall. The result shows that with increasing Ha, the diffusive heat transfer become prominent even though the Rayleigh number increases.  相似文献   

13.
This study explores the effect of Prandtl number on the laminar natural convection heat transfer to Newtonian fluids in a square enclosure consisting of one hot circular cylinder and one cold circular cylinder. The walls of the square enclosure are maintained isothermal and at the same temperature as the cold cylinder and the fluid medium. The governing partial differential equations have been solved numerically over the following ranges of conditions: Grashof number, 10 to 105; Prandtl number, 0.7 to 100 (or the range of Rayleigh numbers as 7 to 107); and relative positioning of the cylinders, ?0.25 to 0.25. However, the ratio of the radius of the cylinder to the side of the enclosure is held fixed at 0.2. Extensive results on the streamline and isotherm contours, the local Nusselt number distribution, and the average Nusselt number are discussed to delineate the influence of Grashof and Prandtl numbers on them for a given location with respect to the horizontal center line. The surface-averaged Nusselt number shows a positive dependence on Grashof and Prandtl numbers for a fixed location of the two cylinders. The heat transfer results have been correlated as a function of the Rayleigh number and geometric parameters, thereby enabling its prediction in a new application.  相似文献   

14.
We deploy a finite volume numerical computation to investigate the two-dimensional hydromagnetic natural convection in a cooled square enclosure in the presence of four inner heated circular cylinders with identical shape. The inner circular cylinders are placed in a rectangular array with equal distance away from each other within the enclosure and moving along the diagonals of the enclosure. All the walls of the enclosure are kept isothermal with temperatures less than that of the cylinders. A uniform magnetic field is applied along the horizontal direction normal to the vertical wall. All solid walls are assumed electrically insulated. Simulations are performed for a range of the controlling parameters such as the Rayleigh number 103 to 106, Hartmann number 0 to 50, and the dimensionless horizontal and vertical distance from the center of a cylinder to center of another cylinder 0.3 to 0.7. The study specifically aims to understand the effects of the location of the cylinders in the enclosure on the magnetoconvective transport, when they moved along the diagonals of the enclosure. It is observed that the unsteady behavior of the flow and thermal fields at relatively larger Rayleigh numbers and for some cylinder position are suppressed by imposition of the magnetic field. The heat transfer strongly depends on the position of the cylinders and the strength of the magnetic field. Hence, by controlling the position of the objects and the magnetic field strength, a significant control on the hydrodynamic and thermal transport can be achieved.  相似文献   

15.
Natural convection in cavities with a thin fin on the hot wall   总被引:1,自引:0,他引:1  
A numerical study has been carried out in differentially heated square cavities, which are formed by horizontal adiabatic walls and vertical isothermal walls. A thin fin is attached on the active wall. Heat transfer by natural convection is studied by numerically solving equations of mass, momentum and energy. Streamlines and isotherms are produced, heat and mass transfer is calculated. A parametric study is carried out using following parameters: Rayleigh number from 104 to 109, dimensionless thin fin length from 0.10 to 0.90, dimensionless thin fin position from 0 to 0.90, dimensionless conductivity ratio of thin fin from 0 (perfectly insulating) to 60. It is found that Nusselt number is an increasing function of Rayleigh number, and a decreasing function of fin length and relative conductivity ratio. There is always an optimum fin position, which is often at the center or near center of the cavity, which makes heat transfer by natural convection minimized. The heat transfer may be suppressed up to 38% by choosing appropriate thermal and geometrical fin parameters.  相似文献   

16.
Laminar free convection heat transfer from vertical and inclined arrays of horizontal isothermal cylinders in air were investigated experimentally. Experiments were carried out using a Mach-Zehnder interferometer. For the vertical array, the cylinder spacing (center to center) varied from 2 to 5 cylinder diameter. The same range of vertical spacing also was used for the inclined array. The horizontal spacing varied from 0 to 2 cylinder diameter in the inclined array. The Rayleigh number based on the cylinder diameter varied between 103 and 3× 103. The effect of vertical and horizontal cylinder spacing and Rayleigh number on the heat transfer from each individual cylinder and the whole array were investigated. It is found that the free convection heat transfer from any individual cylinder in the array depends on its position relative to the others. Heat transfer correlations have been developed for any individual cylinder in the vertical and inclined arrays and for the arrays. Also the experiment was carried out on a single cylinder for a comparison with the results from other research.  相似文献   

17.
A vertical cylinder maintained at room temperature is located right above a horizontal circular heated plane to constitute a narrow air space between the plane and the cylinder bottom surface. Natural convection heat transfer in the space is experimentally investigated. Average heat transfer coefficients of the heated plane are presented with the variation of space distance and Rayleigh number, and are compared with the predictions of the correlation equations which have been proposed for the space between two infinite parallel plates. Visualized flow patterns above the heated plane are also shown. The relation between the flow pattern and the heat transfer coefficient is discussed to clarify the mechanism of heat transfer in the narrow space. As a result, a heat transfer correlation is proposed, which is applicable over a wide range of space distances. © 2001 Scripta Technica, Heat Trans Asian Res, 30(6): 521–531, 2001  相似文献   

18.
Water cooling panels have been adopted as the vessel cooling system of the High Temperature Engineering Test Reactor (HTTR) to cool the reactor core indirectly by natural convection and thermal radiation. In order to investigate the heat transfer characteristics of high temperature gas in a vertical annular space between the reactor pressure vessel and cooling panels of the HTTR, we carried out experiments and numerical analyses on natural convection heat transfer coupled with thermal radiation heat transfer in an annulus between two vertical concentric cylinders with the inner cylinder heated and the outer cylinder cooled. In the present experiments, Rayleigh number based on the height of the annulus ranged from 2.0 × 107 to 5.4 × 107 for helium gas and from 1.2 × 109 to 3.5 × 109 for nitrogen gas. The numerical results were in good agreement with the experimental ones regarding the surface temperatures of the heating and cooling walls. As a result of the experiments and the numerical analyses, the heat transfer coefficient of natural convection coupled with thermal radiation was obtained as functions of Rayleigh number, radius ratio, and the temperatures and emissivities of the heating and cooling wall surfaces. © 2005 Wiley Periodicals, Inc. Heat Trans Asian Res, 34(5): 293–308, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20070  相似文献   

19.
Conjugate turbulent natural convection and surface radiation in rectangular enclosures heated from below and cooled from other walls, typically encountered in Liquid Metal Fast Breeder Reactor (LMFBR) subsystems, have been investigated by a finite volume method for various aspect ratios. The formulation comprises the standard two equation kε turbulence model with physical boundary conditions (no wall functions), along with the Boussinesq approximation, for the flow and heat transfer. As far as radiation is concerned, the radiosity – irradiation formulation for a transparent fluid of Prandtl number 0.7 has been employed. The conjugate coupling on the walls has been handled by using a fin type formulation. The Rayleigh number based on the width of the enclosure is varied from 108 to 1012 and the aspect ratio is varied from 0.5 to 2.0. Detailed results including stream lines, temperature profiles, and convective, radiative and overall Nusselt numbers are presented. A correlation for the mean convection Nusselt number in terms of Rayleigh number and aspect ratio is proposed for design purposes. The influence of the wall emissivity and the external heat transfer coefficient on the heat transfer from the enclosure has also been investigated.  相似文献   

20.
Natural convection heat transfer from a heated cylinder contained in a square enclosure filled with water–Cu nanofluid is investigated numerically. The main objective of this study is to explore the influence of pertinent parameters such as Prandtl number (Pr) and diameter (D) of the heated body on the flow and heat transfer performance of nanofluids while Rayleigh number (Ra) and the solid particle volume fraction (?) of nanoparticle are considered fixed. The results obtained from finite element method clearly indicate that heat transfer augmentation is possible using highly viscous nanofluid resulting in the compactness of many industrial devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号