首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《分离科学与技术》2012,47(6):1067-1085
Abstract

The extraction of pentachlorophenol (PCP) from pressure-treated wood wafers with supercritical carbon dioxide (SC-CO2) was studied in a continuous-flow extractor. PCP extraction rates were determined as a function of pressure (17.5–25 MPa), temperature (313–353 K), flow rate (1–3 mL/min at supercritical conditions), and sample size (0.8 × 10 × 50 mm and 2.2 × 10 × 50 mm) by measuring PCP concentrations in the extractor effluent intermittently. The rate of extraction increased with an increase in solvent pressure and a decrease in particle size. A fundamental model was developed which includes rates of intraparticle diffusion, external film mass transfer, linear desorption isotherms, and initial distribution of PCP between pore volume (cell lumen) and pore surfaces (cell wall) of wood wafers. The overall mass transfer coefficient and the rate of extraction increased with an increase in solvent pressure, temperature, and flow rate. The adsorption equilibrium coefficients of PCP with wood substance were very small, and more than 80% of the PCP was found to be in the cell lumen initially.  相似文献   

2.
The adsorption/desorption of phenols in aqueous solution onto coconut‐shell granular activated carbon (GAC) in a liquid–solid fluidized bed adsorber approaching saturation capacity was investigated. Experiments were carried out using a 20 mm id adsorber under a variety of operating conditions including GAC particle sizes (0.937, 1.524 mm), GAC mass (12, 24 g), influent phenol concentration (0.367–1.071 mmol dm−3), surface loading of GAC (2.0, 2.5 mmol g−1) and liquid flow rate (0.15, 0.2, 0.35 dm3 min−1). The effect of repetitive adsorption/desorption cycles on the adsorption capacity has also been examined for phenol/GAC systems. The model based on the external mass transfer with film‐surface diffusion, surface adsorption equilibrium and internal mass transfer was proposed to simulate the breakthrough curves of the phenol adsorption/desorption process. Using the experimentally measured Langmuir isotherm equilibrium parameters in the model has been found to describe reasonably well the experimental results. © 1999 Society of Chemical Industry  相似文献   

3.
Extraction of egg yolk oil (EYO) from egg yolk powder (EYP) with supercritical CO2 was performed on a laboratory apparatus. Solubility of EYO in supercritical CO2 was measured. The external diffusion and the equilibrium between solid and fluid phases were experimentally found to be the controlling steps during the extraction process. Based on this mechanism, a mathematical model for this extraction process was developed. The model parameters, adsorption equilibrium constant (kp), EYO concentration in solid controlling the transition in the equilibrium (xk) and the overall volumetric mass transfer coefficient (Kfap), were obtained by simulation. The simulation results indicated that xk is 0.56, Kfap is directly proportional to CO2 flow rate with an exponent of 0.548, and the adsorption heat of EYO is 6–9 kJ mol−1. The model was verified by concentration profiles of solid. The extraction process of EYO with supercritical CO2 was conducted on a pilot plant and the developed model could predict satisfactorily the process.  相似文献   

4.
Adsorption and desorption curves were generated by the axial dispersion and cell models for both equilibrium and non-equilibrium systems having the Langmuir type of isotherm. Ethylene-helium and methane-helium on 5A zeolite were selected to represent the equilibrium system as the mass transfer resistance is small in these systems, while ethylene-helium on 4A zeolite and oxygen-helium on carbon molecular sieve having strong intracrystalline diffusion resistances were selected as the non-equilibrium processes. The time to change the dimensionless exit concentration level between 0.99 and 0.01 (τ0.99–0.01) was chosen as the criterion to find a correspondence between the Peclet number in the axial dispersion model and N, the number of cells in the cell model. Computations were performed to estimate τ0.99–0.01 for all the systems by both models for various values of the non-linearity parameter λ. For both the equilibrium and non-equilibrium processes, the ratio of Peclet number to N changes from a value of 2 at low λ to unity when λ is high (λ = 0.85) during adsorption. However, this ratio can be taken for 2 for all values of λ during desorption.  相似文献   

5.
The ability of peat, lignite and activated chars made from peat and lignite to adsorb dyes and metals from wastewater and NO2 from air was investigated. Equilibrium isotherms were determined to assess the maximum adsorption capacity of the adsorbents for the pollutants. Kinetic studies for the adsorption of dyes and metal ions onto the adsorbents were undertaken in agitated batch adsorbers. Mass transport models were tested to predict the concentration decay curves in batch adsorbers. The models tested were single resistance models based on the assumption of a single external mass transfer coefficient and two resistance models which included an internal diffusion coefficient and an external mass transfer coefficient. The surface phenomena which influence the extent and the rate of uptake have been studied. The equilibrium capacity data conform to Langmuir plots. A previously proposed model was used to evaluate the external single resistance mass transfer model and was successfully applied to predict the adsorption of metal ions in single component systems under batch conditions. It has been shown that the assumption of negligible intraparticle diffusion is valid and that external film diffusion is the rate limiting step in describing the adsorption processes at high sorbent loadings. The same type of result is not observed for the adsorption of coloured organic matter onto peat where the sorption processes cannot be successfully modelled by use of a single resistance model and a two resistance model incorporating internal diffusion is required. The surface phenomena which influence the extent and the rate of uptake of NO2 have been studied. The type of chars produced and the activation processes affect the adsorption. As activation increases, micropore volume and surface area increase and the maximum capacity of the adsorbent increases. Surface area alone is not the only parameter which affects equilibrium uptake. © 1997 SCI.  相似文献   

6.
Posidonia oceanica residues were extracted with supercritical CO2 in order to isolate phenolic compounds. The process was optimized by developing a mathematical model based on mass transfer mechanism consisting of adsorption of supercritical fluid on the solid particles, desorption of solute and convective transfer of solute phase along the column. Henry relation between solute concentrations on the surface of the solid (Cs) and in the solid (q) was approximated in order to describe the adsorption/desorption equilibrium. The model parameters such as solid-liquid film mass transfer coefficient (kf), molecular diffusivity coefficient (DAB) and axial dispersion (Dax) were estimated using empirical methods. The linear driving force model was applied to improve the yield of total phenolic acid recovery. The optimum parameters were elicited as 25 MPa, 323.15 K and a co-solvent mass ratio of 20% yielding 34.97 μg per gram of dry feed and the model satisfactorily described the extraction yield which can be used for scale-up purposes.  相似文献   

7.
This work investigates the modeling of β-carotene extraction from industrial waste product of apricot bagasse at the production of fruit juice. Shrinking core model was selected as the best mathematical model, which characterize the extraction process, after take into consideration of mass transfer mechanisms such as adsorption, diffusion, solubility, and desorption. Effect of main separation parameters such as pressure, temperature, CO2 flow rate, and particle size on the extraction yields were researched at the supercritical fluid extraction system of laboratory scale and the results were compared with the results obtained from the solution of mathematical model.  相似文献   

8.
Recombinant Escherichia coli engineered with a metal-binding peptide was immobilized by entrapment in SiO2 gel beads using the sol–gel method. Biosorption of Cd2+ ions by the immobilized cells was studied in both batch and continuous systems. Adsorption equilibrium could be established within 3 h and the kinetics was well described by the pseudo-second-order kinetic model. The equilibrium data were best described by the Langmuir isotherm with the maximum uptake capacity being 79.9 mg/g cell at 25 °C. More than 95% of the adsorbed Cd2+ could be removed with 0.1 M CaCl2 during desorption. No loss in adsorption capacity was found up to five repeated adsorption/desorption cycles. From mass transfer analysis, only intraparticle diffusion effect was found to be important at low Cd2+ concentration (50 mg/dm3), while at high concentration (250 mg/dm3), both intraparticle and external mass transfer affected biosorption. Continuous removal and recovery of Cd2+ could be carried out by the immobilized cells in a packed-bed reactor.  相似文献   

9.
Mechanisms that control the extraction rate of essential oil from Zataria multiflora Boiss. (Z. multiflora) with subcritical water (SW) were studied. The extraction curves at different solvent flow rates were used to determine whether the extractions were limited primarily by the near equilibrium partitioning of the analyte between the matrix and solvent (i.e. partitioning thermodynamics) or by the rates of analyte desorption from the matrix (i.e. ki-netics). Four simple models have been applied to describe the extraction profiles obtained with SW: (1) a model based solely on the thermodynamic distribution coefficient KD, which assumes that analyte desorption from the ma-trix is rapid compared to elution; (2) one-site kinetic model, which assumes that the extraction rate is limited by the analyte desorption rate from the matrix, and is not limited by the thermodynamic (KD) partitioning that occurs dur-ing elution; (3) two-site kinetic model and (4) external mass transfer resistance model. For SW extraction, the thermodynamic elution of analytes from the matrix was the prevailing mechanism as evidenced by the fact that ex-traction rates increased proportionally with the SW flow rate. This was also confirmed by the fact that simple re-moval calculations based on determined KD (for major essential oil compounds) gave good fits to experimental data for flow rates from 1 to 4 ml•min-1. The results suggested that the overall extraction mechanism was influenced by solute partitioning equilibrium with external mass transfer through liquid film.  相似文献   

10.
The kinetics of single component adsorption on activated carbon is investigated here using a heterogeneous vacancy solution theory (VST) of adsorption. The adsorption isotherm is developed to account for the adsorbate non-ideality due to the size difference between the adsorbate molecule and the vacant site, while incorporating adsorbent heterogeneity through a pore-width-related potential energy. The transport process in the bidisperse carbon considers coupled mass transfer in both macropore and micropore phases simultaneously. Adsorbate diffusion in the micropore network is modeled through effective medium theory, thus considering pore network connectivity in the adsorbent, with the activation energy for adsorbate diffusion related to the adsorption energy, represented by the Steele 10-4-3 potential for carbons. Experimental data of five hydrocarbons, CO2 and SO2 on Ajax carbon at multiple temperatures, as well as three hydrocarbons on Norit carbon at three temperatures are first fitted by the heterogeneous VST model to obtain the isotherm parameters, followed by application of the kinetic model to uptake data on carbon particles of different sizes and geometry at various temperatures. For the hydrocarbons studied, the model can successfully correlate the experimental data for both adsorption equilibrium and kinetics. However, there is some deviation in the fit of the desorption kinetics for polar compounds such as CO2 and SO2, due to the inadequacy of the L-J potential model in this case. The significance of viscous transport in the micropores is also considered here and found to be negligible, consistent with recent molecular simulation studies.  相似文献   

11.
A desorption of m-xylene by supercritical CO2 under different temperatures (40, 50 and 60 °C) and pressures (80, 100 and 128 bar) has been modelled using the analytical solution expressing the desorption yield for bidisperse granular activated carbon. This solution is in the form of an infinite double series. The coefficients of which were calculated by solving the transcendental equation using the method of Newton-Raphson. Solutions of first and second order of this equation determine the coefficients of the analytical solution. The results of this modelling, including macropore and micropore diffusion, show very good concordancy between experimental and simulated data for all operating conditions, which confirms the appropriateness of this model for this type of adsorbent considered. Only the equilibrium adsorption constant “KC” was used as adjustable parameter. The values of KC varied between 13.32 and 121.33 and the maximum average deviation between estimated and fitted values not exceeding 6.54%. On the other hand, it has been particularly highlighted for the experimental conditions studied, that the contribution of resistance due to external transfer and axial dispersion were negligible and that the resistance due to macropore diffusion was consistent and it was possible to reduce the time of desorption by reducing the size of the grain.  相似文献   

12.
13.
Three novel magnetic adsorbents were synthesized through the immobilization of di-, tri-, and tetraamine onto the surface of silica coated magnetite nanoparticles. The adsorbents were characterized by XRD patterns, FTIR spectroscopy, elemental and thermogravimetric analysis, magnetic measurements, SEM/TEM, EDX spectroscopy, and N2 adsorption/desorption isotherms. Their capacity to remove copper ions from aqueous solutions was investigated and discussed comparatively. The equilibrium data were analyzed using Langmuir and Freundlich isotherms. The kinetics was evaluated using the pseudo-first-order, pseudo-second-order, and intra-particle diffusion models. The best interpretation for the equilibrium data was given by the Langmuir isotherm for the tri- and tetraamine functionalized adsorbents, while for the diamine functionalized adsorbent the Freundlich model seemed to be better. The kinetic data were well fitted to the pseudo-second-order model. The overall rate of adsorption was significantly influenced by external mass transfer and intraparticle diffusion. It was observed that the adsorption capacity at room temperature decreased as the length of polyamine chain immobilized on the adsorbent surface increased, the maximum adsorption capacities being 52.3 mg g?1 for 1,3-diaminopropan functionalized adsorbent, 44.2 mg g?1 for diethylenetriamine functionalized adsorbent, and 39.2 mg g?1 for triethylenetetramine functionalized adsorbent. The sorption process proved to be highly dependent of pH. The results of the present work recommend these materials as potential candidates for copper removal from aqueous solutions.  相似文献   

14.
The packed bed extraction of spearmint oil using supercritical carbon dioxide was studied by a two-phase mass transfer model on the basis of desorption and diffusion. Unsteady-state mass balance for solute in supercritical and in solid phases led to two partial differential equations that were solved numerically using a linear equilibrium relationship. The model has four parameters, axial dispersion, mass transfer, and diffusion and desorption coefficients. Diffusion and desorption coefficients were used as the model tuning parameters and the others were predicted applying existing experimental correlations. The tuning parameters were calculated by the fitting error between 5 and 15% by the genetic algorithm method. In addition, this model was compared with a model that did not account for the desorption rate, according to the model suggested by Goodarznia and Eikani (G&E). Moreover, the effects of operational parameters such as pressures, temperatures, CO2 flow rates, and mean particle sizes on the extraction yield were evaluated. In order to obtain experimental data for spearmint oil, a facility was designed and constructed to conduct the experimental part of this study. The two models were also applied to the literature's experimental data for rosemary leaves, grape seeds, peanuts, and tomato seeds. Comparison of the results of the proposed model with results from the G&E model indicated that the proposed model had better predictability. Also, good agreement of the proposed model results and the experimental data confirmed the basic hypothesis of the model and the importance of the desorption rate.  相似文献   

15.
A mass transport model has been developed and applied to the adsorption of three acid dyes onto activated carbon in three single component systems. The mass transfer model is based on two rate controlling mass transfer steps, namely external film mass transfer and homogeneous solid‐phase surface diffusion (HSD). Almost all previous film‐HSD models have been based on numerical solutions to the diffusion equation using orthogonal collocation or Crank–Nicolson finite difference solutions. However, in the present model a semi‐analytical solution to the solid surface diffusion equation is presented, yielding a sophisticated solution of the differential equations. The solutions provide a good correlation between the experimental concentration–time decay curves by incorporating the Langmuir equilibrium isotherm to describe the solid phase surface dye concentrations. However, the surface diffusivities show a dependence on the carbon particle surface coverage and these diffusivities have been correlated using a Darken relationship. Copyright © 2004 Society of Chemical Industry  相似文献   

16.
The dynamic behavior of supercritical fluid extraction (SFE) of valerenic acid (VA) from valerian (Valeriana officinalis L.) roots was studied by mathematical modeling. The extraction yield of VA was considered as the most desirable compound among the other extracted constituents. A two‐phase desorption model was developed by considering a diffusion controlled regime in the particle and axial dispersion in the bed. The mass transfer parameters, i.e., pore diffusivity, film mass transfer coefficient and axial dispersion, along with the solubility parameters were chosen as the model parameters. The first three mass transfer parameters were predicted using nondimensional equations from the literature. The solubility equation and the parameters were studied using different equilibrium models, i.e., Henry, Langmuir, Freundlich, Langmuir‐Freundlich (L‐F) and Toth isotherms. The equilibrium parameters were correlated by comparing the outlet results of the dynamic SFE model with experiments. The experimental yield of the VA extraction was obtained at a pressure of 15.0–36.0 MPa, temperature of 310–334 K, solvent flow rate of 0.50–1.10 · 10–6 m3/min and different particle sizes ranging from 0.18–2.00 · 10–3 m in diameter, at a 20 min constant static period, in the presence of 46.9 μL/g ethanol as the co‐solvent, followed by dynamic time extraction for up to 50 min. From the results, the mathematical model using the L‐F equation exhibited the best agreement with the experimental yield of VA extraction in the range of studied conditions. The present model can be applied to design and scale up the SFE process of VA from Valeriana officinalis L. roots.  相似文献   

17.
Bi-solute adsorption of dissolved organics by activated carbon was studied in a finite bath system. The batch tests with strongly adsorbable species show that at low concentrations (X < 0.1 mmol/1) only external mass transfer resistance is rate-determining. For higher concentrations internal mass transfer becomes increasingly important. This behavior indicates that the diffusional process within the particle occurs predominantly in the adsorbed phase.Bi-solute calculations were performed, using only single-solute data. Systems with differing equilibrium behavior, but similar diffusive properties of both solutes, were described adequately by a model which takes into account diffusion in the liquid-filled pores and in the adsorbed phase, as well as external mass transfer. Deviations between measured and predicted rates can be observed for systems with large differences in the mobility of the diffusing molecules, or if counter diffusion inside the particles occurs. It is likely that the discrepancies in these cases are caused by diffusional interactions between the two different species in the adsorbed phase.  相似文献   

18.
The Acid Black 172 dye adsorption on the uncalcined hydroxyapatite nanopowder was investigated. The hydroxyapatite prepared by wet coprecipitation method has high specific surface area of 325 m2/g and crystal sizes smaller than 70 nm. The batch adsorption experiments revealed that under the optimum adsorption conditions (pH 3, hydroxyapatite dosage 2 g/L, initial dye concentration 400 mg/L and temperature 20 °C) the dye removal efficiency was 95.78% after 1 h of adsorption. The adsorption kinetics was best described by the pseudo-second order kinetic model. The intraparticle diffusion model shows that intraparticle diffusion is not the sole rate-limiting step; the mass transfer also influences the adsorption process in its initial period. The Langmuir isotherm model best represented the equilibrium experimental data, and the maximum adsorption capacity (q m ) was 312.5 mg/g.  相似文献   

19.
Adsorption breakthrough curves for bisolute systems of dissolved organics on activated carbon are measured in fixed beds.Results for strongly adsorbable species indicate that at low liquid concentrations (X<0.1 mmol/l.) only external mass transfer resistance is rate determining.However, at higher liquid concentrations internal mass transfer becomes increasingly significant. Breakthrough behaviour is predicted using alternatively three different models with different assumptions about diffusion in the liquid filled pores and diffusion on the surface in series with external film diffusion.Multi-solute adsorption equilibria are predicted from single-solute data using the ideal adsorbed solution theory developed by Myers and Prausnitz, while the single-solute equilibria are represented by Freundlich isotherms. The external mass transfer coefficient for each component is calculated by a general correlation for heat and mass transfer in fixed beds. The internal diffusion coefficient for each component is determined in batch reactor tests with the single-solute system.Systematic deviations between measured breakthrough curves and those calculated from different models using only single-solute data are observed in all experiments with mixed solutes if there is significant internal diffusional resistance and marked displacement of one component inside the carbon particles. The deviations may be due to mutual interference of diffusing molecules. A better agreement between calculated and observed breakthrough curves can be obtained using an extended model in which mixture data are required.  相似文献   

20.
Adsorption/desorption kinetics of protein on the binding ligand of inert core adsorbent in a batch adsorber is analyzed theoretically for Langmuir isotherm coupled with the intraparticle diffusion and film mass transfer resistances. For the two limiting cases of Langmuir isotherm, there are analytical solutions. New analytical solutions are derived for Henry isotherm, and the analytical solution of shrinking core model is recommended for rectangular isotherm. The effects of the inert core radius, equilibrium constant, intraparticle diffusion and film mass transfer resistances on the time evolution of bulk concentration and particle radial profiles were investigated. The applicable range of the analytical solution with rectangular isotherm is given. A new method to estimate both film mass transfer coefficient, kf, and effective pore diffusivity, Dpe, from a single bulk concentration-time curve in batch adsorber is given and tested with literature data for the adsorption of BSA on CB-6AS inert core adsorbent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号