首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 849 毫秒
1.
The beneficial effects of cold expansion have been well documented in previous studies, yet the performance of cold expanded plates exposed to elevated temperatures is an area of technical interest. In this research, finite element (FE) simulations along with experimental fatigue tests have been carried out to investigate the effect of exposure to elevated temperature on residual stress distribution and subsequent fatigue life of cold expanded fastener holes. According to the obtained results, creep stress relaxation occurs due to exposure to 120 °C for 50 h. FE results demonstrate a non-uniform residual stress relaxation regime through the plate thickness around the cold expanded hole and the fatigue test results show that the subsequent fatigue lives have significantly decreased.  相似文献   

2.
Abstract The interaction of fatigue and creep in a titanium metal matrix composite was studied by employing loading frequencies of 10 Hz (in both air and vacuum environment) and 0.1 Hz with and without hold times (in air) at 500°C. It was shown that, for the same loading frequency, the crack growth rate is lower in vacuum than in air. In an air environment, however, where the influence of load-related creep and environmental effects exist, it was shown that a decrease in the loading frequency leads to a decrease in the crack growth rate. This behavior is interpreted in terms of the redistribution of fiber and matrix stresses occurring in response to the creep-related relaxation of matrix stresses. The result of this stress redistribution is the generation of a compressive axial residual stress in the matrix phase in the region of the composite ahead of the crack tip. As the crack bridges the fibers in this region, the release of the matrix residual compressive stress leads to the closure of the matrix fractured surfaces at the crack tip, thus leading to a decrease in the crack tip driving force. To support this concept, experimental measurements of the crack opening displacement at different loading frequencies are presented. In addition, a simple model is proposed to describe the nature of the residual stresses developed in the matrix phase during cyclic loading. Results of this model have been examined using finite element analysis. The influence of time-dependent effects during a fatigue cycle was, furthermore, investigated by carrying out high frequency fatigue tests on specimens which have been previously subjected to creep deformation. Results of these tests in terms of the crack growth rate and associated crack closure, support the conclusion that a predeformed matrix produces a decrease in the crack growth rate of the corresponding composite.  相似文献   

3.
Load‐controlled fatigue tests were performed at 20 and 50 °C using two relative humidity levels of 55 and 80% to characterize the influence of humidity and temperature on the fatigue behaviour of an extruded AZ61 magnesium alloy. Fatigue tests were also conducted at 150 °C. No significant variation in fatigue properties was noticed with respect to temperature over the range from 20 to 50 °C for both the humidity levels. Fatigue limits in the range 140–150 MPa were observed for relative humidity of 55%. Fatigue strength decreased significantly with increase in temperature to 150 °C. Further, a significant reduction in fatigue strength with a fatigue limit of ~110 MPa was observed with increase in relative humidity to 80% at 20 and 50 °C. The crack initiation and propagation remained transgranular under all test conditions. The fatigue fracture at low stress amplitudes and high relative humidity of 80% results from the formation of corrosion pits at the surface and their growth to a critical size for fatigue‐crack initiation and propagation. The observed reduction in fatigue strength at high humidity is ascribed to the effects associated with fatigue–environment interaction.  相似文献   

4.
Abstract— —Fatigue crack growth and closure through a tensile residual stress field under an applied compressive loading is investigated by carrying out various applied stress ratio tests ranging from R = 0 to R = It is found that even under applied compressive loading, fatigue crack growth rates are well correlated with the effective stress intensity factor range and the behaviour of crack closure through a tensile residual stress field is uniquely controlled by an effective stress ratio which takes account of residual stresses. Consequently, the method of predicting fatigue growth rates, using da/d N vs Δ K data from residual stress-free specimens, can be successfully applied to crack growth through a tensile residual stress field. However, previously used simple assumptions may lead to non-conservative estimates of crack growth rates.  相似文献   

5.
Fatigue crack growth rates have been experimentally determined for the superalloy GH2036 (in Chinese series) at an elevated temperature of 550 °C under pure low cycle fatigue (LCF) and combined high and low cycle fatigue (CCF) loading conditions by establishing a CCF test rig and using corner-notched specimens. These studies reveal decelerated crack growth rates under CCF loading compared to pure LCF loading, and crack propagation accelerates as the dwell time prolongs. Then the mechanism of fatigue crack growth at different loadings has been discussed by using scanning electron microscope (SEM) analyses of the fracture surface.  相似文献   

6.
Fatigue and creep fatigue crack growth behaviour of alloy 800 at 550°C have been studied to analyse defect assessment in a steam generator. Different grades of alloy 800 have been investigated to reproduce the in service conditions. Fatigue crack growth (FCG) tests were conducted on CT20 and tubular specimens, then on welded tubes. Furthermore the influence of hold times on fatigue crack growth behaviour was studied.

The results obtained on material simulating the weld heat affected zone are in agreement with the tests conducted on welded tubes. Fatigue crack growth characteristics of aged and cold-worked aged material seem to be slightly improved in comparison with base material. Finally a hold time of one minute increases strongly the FCG threshold value determined in pure fatigue but has a negligible influence on crack growth rates.  相似文献   

7.
FATIGUE OF THICK-SECTION COLD-EXPANDED HOLES WITH AND WITHOUT CRACKS   总被引:1,自引:0,他引:1  
Abstract— Fatigue tests under spectrum loading were conducted to evaluate hole cold-expansion in thick-section open-hole aluminium alloy specimens, some of which contained residual fatigue cracks before cold expansion. Cold expansion resulted in an increase in life by a factor of about 7. Small residual fatigue cracks did not inhibit the effectiveness of the cold-expansion process, indicating that it may not be essential to remove such cracks prior to hole cold-expansion. The increase in life is primarily associated with a reduced crack propagation rate compared with that for cracks from non-cold-expanded holes. Cold-expanded hole fractures displayed a marked disparity in crack depths adjacent to the two faces of the specimens. Considerable differences were evident in crack depths and fatigue crack areas at failure between cold-expanded and non-cold-expanded hole specimens. These findings have ramifications in the damage tolerance assessment of aircraft structures.  相似文献   

8.
A series of uniaxial fatigue tests were carried out using specimens containing non-cold expanded and cold expanded holes to assess the effect of split sleeve cold expansion on fatigue behavior of titanium alloy TC4. The fracture surfaces of specimens were observed by scanning electron microscope (SEM). 3D finite element models were also used to analyze the residual stress fields around cold expanded holes. Based on the qualitative finite element analysis (FEA), the multi-axial fatigue lives of the non-cold and cold expanded holes have been predicted by Smith–Watson–Topper (SWT) method and Wang–Brown (WB) method respectively. The effects of the friction between the split sleeve and the hole’s surface were also considered. The results reveal that crack of cold expanded specimen always initiates near entrance face and the crack propagation speed along transverse direction is faster than along axial direction. The lowest compressive stress occurs at the entrance face where crack is preferentially initiated. The mandrel entrance face is the most sensitive region to friction between the split sleeve outer surface and the hole. After cold expansion, fatigue life of TC4 open hole was increased to 1.7–2.2 times. Compared with the result of SWT theory, the result of WB theory is more conservative and reliable.  相似文献   

9.
Fatigue crack propagation in cold-formed corners of high-strength structural steel plate-type structures has been investigated. Large- and small-scale test specimens having complex residual stress states and subject to multi-axial cyclic local stresses have been investigated using both laboratory tests and numerical simulations. The combinations of alternating bending stress, alternating shear stress and static mean stress producing complex multi-axial stress states have been found to influence the fatigue crack path behaviour. Straight, zig-zag and “S” shaped cracks were observed depending on the material strength, range of cyclic loading, residual stress field and multi-axiality of the local stresses. Numerical simulations of residual stresses and linear elastic fracture mechanics were used to help understand the alternate crack paths. Mode I cracks propagating into a static compressive stress field did not arrest, but, due to the multi-axial stresses, combinations of mixed mode I, II and III crack growth with distinct paths were observed. The crack paths depend on the type and range of cyclic loading, material properties and residual stress conditions of the specimens.  相似文献   

10.
The present study was undertaken to determine whether the correlation between fatigue and creep established for polyethylene in air could be extended to environmental liquids. Fatigue and creep tests under various conditions of stress, R-ratio (defined as the ratio of minimum to maximum load in the fatigue loading cycle), and frequency were performed in air and in Igepal solutions. The load–displacement curves indicated that stepwise fatigue crack growth in air was preserved in Igepal solutions at 50 °C, the temperature specified for the ASTM standard. In air, systematically decreasing the dynamic component of fatigue loading by increasing the R-ratio to R = 1 (creep) steadily increased the lifetime. In contrast, the lifetime in Igepal was affected to a much smaller extent. The fatigue to creep correlation in air was previously established primarily for tests at 21 °C. Before testing the correlation in Igepal, it was necessary to establish the correlation in air at 50 °C. Microscopic methods were used to verify stepwise crack growth by the sequential formation and breakdown of a craze zone, and to confirm the fatigue to creep correlation. The crack growth rate under various loading conditions was related to the maximum stress and R-ratio by a power law relationship. Alternatively, a strain rate approach, which considered a creep contribution and a fatigue acceleration factor that depended only on strain rate, reliably correlated fatigue and creep in air at 50 °C under most loading conditions of stress, R-ratio and frequency. The exceptions were fatigue loading under conditions of R = 0.1 and frequency less than 1 Hz. It was speculated that compression and bending of highly extended craze fibrils were responsible for unexpectedly high crack speeds.  相似文献   

11.
Abstract

Fatigue tests under constant amplitude load were conducted on compact tension specimens of SA533B3 steels with four levels of sulphur content at different temperatures. A modified capacitance type crack opening displacement (COD) gauge was shown to be suitable for fatigue crack length measurement at high temperatures. Test results obtained with different measurement techniques show good consistency. The observation that the Young's moduli measured at a strain rate of 4 × 10?3 s?1 for the SA533B3 steels at 150 and 300°C do not decrease with increasing temperature seems to be related to the presence of dynamic strain aging. The fatigue crack growth rates at 150 and 300°C are about two and half times slower than those tested at 400°C because dynamic strain aging prevails at 150 and 300°C. Fractographic examination results suggest that inclusions embedded in secondary cracks enhanced the fatigue crack initiation rather than the fatigue crack growth.  相似文献   

12.
Bonded repairs can replace mechanically fastened repairs for aircraft structures. Compared to mechanical fastening, adhesive bonding provides a more uniform and efficient load transfer into the patch, and can reduce the risk of high stress concentrations caused by additional fastener holes necessary for riveted repairs. Previous fatigue tests on bonded Glare (glass‐reinforced aluminium laminate) repairs were performed at room temperature and under constant amplitude fatigue loading. However, the realistic operating temperature of ?40 °C may degrade the material and will cause unfavourable thermal stresses. Bonded repair specimens were tested at ?40 °C and other specimens were tested at room temperature after subjecting them to temperature cycles. Also, tests were performed with a realistic C‐5A Galaxy fuselage fatigue spectrum at room temperature. The behaviour of Glare repair patches was compared with boron/epoxy ones with equal extensional stiffness. The thermal cycles before fatigue cycling did not degrade the repair. A constant temperature of ?40 °C during the mechanical fatigue load had a favourable effect on the fatigue crack growth rate. Glare repair patches showed lower crack growth rates than boron/epoxy repairs. Finite element analyses revealed that the higher crack growth rates for boron/epoxy repairs are caused by the higher thermal stresses induced by the curing of the adhesive. The fatigue crack growth rate under spectrum loading could be accurately predicted with stress intensity factors calculated by finite element modelling and cycle‐by‐cycle integration that neglected interaction effects of the different stress amplitudes, which is possible because stress intensities at the crack tip under the repair patch remain small. For an accurate prediction it was necessary to use an effective stress intensity factor that is a function of the stress ratio at the crack tip Rcrack tip including the thermal stress under the bonded patch.  相似文献   

13.
Abstract

The effects of aging temperature and aging time on fatigue crack growth resistance have been studied for a 7475 Al-Zn-Mg based aluminium alloy. The alloy was tested in the underaged, peak aged, and overaged conditions after aging at 120 and 160C. Fatigue crack propagation tests were conducted in laboratory air using compact tension specimens in L-S orientation, under constant amplitude sinusoidal loading with an R ratio of zero. Results are discussed on the basis of resultant microstructures, fatigue crack growth rate diagrams and fractographic analysis. At 120C, a considerable effect of aging time on crack velocities at high stress intensities was seen. However, at 160C no significant dependency of crack growth rate on aging time was observed. The fatigue performance of overaged specimens was better for both aging temperatures. Also, lower aging temperature resulted in a more resistant structure against fatigue crack growth. Fractographic inspection showed that intermetallic particles play an important role in the crack growth behaviour of the Al-Zn-Mg alloy.  相似文献   

14.
A previous experimental study revealed fatigue life reduction in Al 7075-T6 cold expanded fastener holes exposed to 120 °C for 1 h. The obtained experimental evidence indicated a residual stress reduction associated with material softening at elevated temperatures, termed as thermo-mechanical stress relaxation. In order to identify and characterize the potential features of this phenomenon, FE analysis is carried out in this study and a detailed body of evidence is provided for occurrence of a time-independent thermo-mechanical residual stress relaxation around cold expanded fastener holes due to exposure to elevated temperature. The results of FE simulation demonstrate a good agreement with experimental results obtained earlier.  相似文献   

15.
《Composites Part A》2002,33(11):1539-1547
Crack propagation in single edge notched tensile specimens of isotactic polypropylene reinforced with short E-glass fibres has been investigated under both fatigue and creep loading conditions. Fatigue crack propagation (FCP) experiments have been performed at three different frequencies (0.1, 1, 10 Hz) and at a mean applied tensile load of 1200 N. Isothermal creep crack propagation (CCP) tests have been conducted under a constant tensile applied load of 1200 N at various temperatures in the range from 32 to 60 °C. Analysis of FCP data allowed an estimation of the pure fatigue and pure creep components of the crack velocity under the adopted cyclic loading conditions. Crack growth at low frequencies (0.1 and 1 Hz) is mainly associated with a non-isothermal creep process. At higher frequency (10 Hz), the pure fatigue contribution appeared more pronounced. Finally, the comparison of FCP and CCP as a function of the mean applied stress intensity factor confirmed the major contribution of creep crack growth during FCP process at low frequencies.  相似文献   

16.
Abstract

The fatigue crack growth resistance of a [0/90°]2S Ti-6Al-4V (wt-%) SCS-6 cross ply laminate has been assessed as a function of varying the initial nominal stress intensity factor range (?K), the test temperature, and the environment. In all cases, through thickness cracks have been grown from unbridged defects. Fatigue crack growth rates are higher at elevated temperatures of 300 and 450° C in air. However, tests carried out at a temperature of up to 450° C in vacuum have shown that crack arrest conditions are similar to those observed from specimens studied at room temperature and at a temperature of 300° C in air. In these cases, initial ?Kini transition values between fatigue crack arrest and eventual specimen catastrophic failure are close to 10 MPa m1/2. In contrast, at a temperature of 450°C in air, even for tests performed at a frequency of 10 Hz, the limiting value of initial ?Kini to give crack arrest is less than 6 MPa m1/2. This has been attributed to the action of an aggressive environment, and particularly to the attack of the carbon coating layers. In addition, correlations have been found between fibre pull out lengths and changes in both temperature and environment; these are negligible after tests at 450°C in air. Finally, for such composites, sudden increases in fatigue crack growth rates have been attributed unequivocally to the failure of bridging fi bres, which were detected using acoustic emission.  相似文献   

17.
Experimental results of a research project on short crack growth under multiaxial nonproportional loading are presented. Fatigue lives, crack growth curves and the deformation behaviour of hollow tube specimens and notched specimens were investigated under combined tension and torsion loading. The results served as basis for the development of a cyclic plasticity model [Döring R, Hoffmeyer J, Vormwald M, Seeger T. A plasticity model for calculating stress–strain sequences under multiaxial nonproportional cyclic loading. In: Comput Mater Sci. 28(3–4);2003:587–96; Döring R, Hoffmeyer J, Seeger T, Vormwald M. Constitutive modelling of nonproportional hardening, cyclic hardening and ratchetting. In: Proceedings of the seventh international conference on biaxial/multiaxial fatigue and fracture, DVM, Berlin; 2004. p. 291–6; Hoffmeyer J. Anrisslebensdauervorhersage bei mehrachsiger Beanspruchung auf Basis des Kurzrisskonzepts. PhD-Thesis, TU Darmstadt; 2004.] and a short crack model [Hoffmeyer J. Anrisslebensdauervorhersage bei mehrachsiger Beanspruchung auf Basis des Kurzrisskonzepts. PhD-Thesis, TU Darmstadt; 2004; Döring R, Hoffmeyer J, Seeger T, Vormwald M. Fatigue lifetime prediction based on a short crack growth model for multiaxial nonproportional loading. In: Proceedings of the seventh international conference on biaxial and multiaxial fatigue and fracture, DVM, Berlin; 2004. p. 253–8].Stress–strain paths including nonproportional hardening and experimental fatigue lives of the unnotched specimens under different loading cases are discussed and compared with calculations. Load-time-sequences were in-phase, 45° and 90° out-of-phase loading with constant and variable amplitudes, torsion without and with superimposed static normal stress, and strain paths like box, butterfly, diamond and cross path. For the notched specimens fatigue lives under 0° and 90° out-of-phase loading are compared with calculations based on finite element results and the short crack model. During some tests the initiation, growth and orientation of short cracks was studied using the plastic replica technique.  相似文献   

18.
Fatigue testing under fully reversed axial loading (R=?1) and zero‐to‐tension axial loading (R= 0) was carried out on AISI 4140 gas‐nitrided smooth specimens. Three different treatment durations were investigated in order to assess the effect of nitriding depth on fatigue strength in high cycle fatigue. Complete specimens characterization, i.e., hardness and residual stresses profiles (including measurement of stabilized residual stresses) as well as metallographic and fractographic observations, was achieved to analyse fatigue behaviour. Fatigue of the nitrided steel is a competition between a surface crack growing in a compressive residual stress field and an internal crack or ‘fish‐eye’ crack growing in vacuum. Fatigue life increases with nitriding depth until surface cracking is slow enough for failure to occur from an internal crack. Unlike bending, in axial fatigue ‘fish‐eye’ cracks can initiate anywhere in the core volume under uniform stress. In these conditions, axial fatigue performance is lower than that obtained under bending and nitriding depth may have no more influence. In order to interpret the results, special attention was given to the effects of compressive residual stresses on the surface short crack growth (closure effect) as well as the effects of internal defect size on internal fatigue lives. A superimposed tensile mean stress reduces the internal fatigue strength of nitrided steel more than the surface fatigue strength of the base metal. Both cracking mechanisms are not equally sensitive to mean stress.  相似文献   

19.
This work was conducted as a small part of BRITE-EURAM Project BE 7463. In order to relate results from laboratory sized specimens to those on actual tubular components, test pieces from straight and cold bent carbon manganese steel tubing were tested under internal pressurisation at 360°C. Project work had previously indicated significant residual stress relaxation in cold bent material at 360°C, hence this was also investigated, it being anticipated that such stresses would play a role in the crack growth. Increased time at 360°C before pressurisation increased failure times on both bends and straight tubing. The latter was found also to contain high residual stresses. Such effects must be taken into consideration both during testing and when applying results to plant situations. Preliminary data analysis indicates that crack growth in tubular materials is faster than crack growth rates in both compact tension and three point bend specimens for equivalent K or C* values. Therefore both geometry and size effects have a significant influence on creep crack growth behaviour.  相似文献   

20.
Many manufacturing processes can induce residual stresses in components. These residual stresses influence the mean stress during cyclic loading and so can influence the fatigue life. However, the initial residual stresses induced during manufacturing may not remain stable during the fatigue life. This paper provides a broad and extensive literature survey addressing the stability of surface and near‐surface residual stress fields during fatigue, including redistribution and relaxation due to static mechanical load, repeated cyclic loads, thermal exposure and crack extension. The implications of the initial and evolving residual stress state for fatigue behaviour and life prediction are addressed, with special attention to fatigue crack growth. This survey is not a critical analysis; no detailed attempt is made to evaluate the relative merits of the different explanations and models proposed, to propose new explanations or models or to provide quantitative conclusions. Primary attention is given to the residual stresses resulting from four major classes of manufacturing operations: shot peening and related surface treatments, cold expansion of holes, welding and machining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号