首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GaN films with highly c-axis preferred orientation are deposited on free-standing thick diamond films by low temperature electron cyclotron resonance plasma enhanced metal organic chemical vapor deposition (ECR-PEMOCVD). The TMGa and N2 are applied as precursors of Ga and N, respectively. The quality of as-grown GaN films are systematically investigated as a function of deposition temperature by means of X-ray diffraction (XRD) analysis, Hall Effect measurement (HL), room temperature photoluminescence (PL) and atomic force microscopy (AFM). The results show that the dense and uniformed GaN films with highly c-axis preferred orientation are successfully achieved on free-standing diamond substrates under optimized deposition temperature of 400 °C, and the room temperature PL spectra of the optimized GaN film show a intense ultraviolet near band edge emission and a weak yellow luminescence. The obtained GaN/diamond structure has great potential for the development of high-power semiconductor devices due to its excellent heat dissipation nature.  相似文献   

2.
《Materials Letters》2006,60(21-22):2569-2572
High quality free-standing poly (dibenzofuran) (PDBF) films with conductivity of 100 S cm 1 were synthesized electrochemically by direct anodic oxidation of dibenzofuran in mixed electrolytes of boron trifluoride diethyl etherate (BFEE) containing 30% trifluoroacetic acid (TFA) (by volume). The structure analysis of PDBF was performed using UV–vis and FTIR spectroscopy. To the best of our knowledge, this is the first report on the electrodeposition of free-standing PDBF films.  相似文献   

3.
C.B. Soh  S.J. Chua  P. Chen  W. Liu 《Thin solid films》2007,515(10):4509-4513
Deep level transient spectroscopy has been used to characterize the deep levels in InGaN/GaN grown on sapphire substrate as well as on free-standing GaN. The deep levels at Ec − Et ∼ 0.17-0.23 eV and Ec − Et ∼ 0.58-0.62 eV have been detected in our samples which are present in GaN samples reported by others. These two deep levels have been attributed by us to threading dislocations as they exhibit logarithmic capture kinetic behavior and are found to be substantially reduced in its trap concentration (∼ from 1014 to 1012 cm− 2) in GaN grown on free-standing GaN template. Other than the two deep levels, an additional level at Ec − Et ∼ 0.40-0.42 eV has been identified in both samples, which is believed to be related to In segregation. AFM image shows region of pits formation in InGaN epilayer for sample grown on u-GaN using sapphire substrate while the latter gives a much smoother morphology. From the X-ray diffraction space mapping, the mosaicity of the sample structure for both samples were studied. Dislocations do not play a significant role in the structural properties of InGaN grown on free-standing GaN since the FWHM based on the Δ ω is relatively small (± 0.15°) in the case of InGaN/GaN on free-standing GaN substrate as compared to that on sapphire (± 0.35°). The wider spread in Δω-2θ value for InGaN layer on free-standing GaN also suggested the effect of compositional pulling with increasing InGaN layer thickness.  相似文献   

4.
The 2-inch-diameter homogeneous GaN films have been epitaxially grown on sapphire substrates by pulsed laser deposition (PLD) technique with optimized laser rastering and PLD growth conditions. The as-grown GaN films are characterized by in situ reflection high-energy electron diffraction, white-light interferometry, scanning electron microscopy, atomic force microscopy (AFM), grazing incidence angle X-ray reflectivity, reciprocal space mappings, and micro-Raman spectroscopy for surface morphologies and structural properties. The as-grown 2-inch-diameter single-crystalline GaN films exhibit excellent thickness uniformity with a root-mean-square (RMS) inhomogeneity less than 3.4 % and very smooth surface with a RMS roughness less than 1.3 nm measured by AFM. There is a maximum of 1.2 nm thick interfacial layer existing between the as-grown GaN films and sapphire substrates, and the as-grown 310 nm thick GaN films are almost fully relaxed only with an in-plane compressive strain of 0.044 %. This work demonstrates a possibility for achieving high-quality large-scale GaN films with uniform thickness and atomically abrupt interface by PLD, and is of great interest for the commercial development of GaN-based optoelectronic devices.  相似文献   

5.
Ferroelectric PZT(70/30) thick films were fabricated by the hybrid technique adding the sol-coating process to the normal screen-printing process to obtain a good densification. The screen-printing procedure was repeated four times to form PZT(70/30) thick films, and then PZT(30/70) precursor solution was spin-coated on the PZT thick films. All PZT thick films showed the typical XRD patterns of a perovskite polycrystalline structure. The thickness of all thick films was approximately 75–80 μm. The relative dielectric constant and dielectric loss of the PZT-6 thick film were 656 and 1.2%, respectively. The remanent polarization increased and coercive field decreased with increasing the number of sol coatings and the values of the PZT-6 thick films were 28.3 μC/cm2 and 13.1 kV/cm, respectively. Leakage current density of PZT-6 thick films was 2.4 × 10−9 A/cm2 at 100 kV/cm.  相似文献   

6.
Highly oriented GaN thin films were grown on Si(111) substrate using an ion beam assisted evaporation method. Nitrogen ions, with a kinetic energy of about 40 eV, was supplied by a Kaufman ion source; and Ga vapor was supplied by thermal evaporation. The surface morphology of the nucleation layer, and the crystalline properties of 200–300 nm thick GaN epi-layer were investigated by atomic force microscopy, transmission electron microscopy, and X-ray diffraction. Film grown under a Ga-rich flux condition produced film growth behavior of large islands of hexagonal configuration. Crystallinity on such film, however, was of poorer quality than other films with smaller islands, grown under high nitrogen ion flux conditions. The full width at half-maximum of (0002) diffraction peak was measured at 52 arcminutes for the GaN epilayer single-stepwise grown at 660°C. Ion-enhanced decomposition occurred, causing no film formation at substrate temperatures above 710°C. Additionally, the effect of predeposition of a buffer layer on GaN crystallinity was investigated for surface roughness. AFM measurement revealed that the GaN buffer layer grown on Si(111) showed smooth surface under the relatively N2+-sufficient condition. The introduction of thin GaN buffer layer, grown at 600°C under N2+-sufficient condition, worked on reducing the lattice-mismatch stress and in-plane misorientation of grains, and thus enhancing the crystallinity of the two-stepwise grown GaN epi-layer. Characteristic behavior of GaN epi-layers, single or two stepwise grown on Si(111), show a type of granular (columnar) epitaxy.  相似文献   

7.
Heteroepitaxial growth of lattice mismatched materials has advanced through the epitaxy of thin coherently strained layers, the strain sharing in virtual and nanoscale substrates, and the growth of thick films with intermediate strain‐relaxed buffer layers. However, the thermal mismatch is not completely resolved in highly mismatched systems such as in GaN‐on‐Si. Here, geometrical effects and surface faceting to dilate thermal stresses at the surface of selectively grown epitaxial GaN layers on Si are exploited. The growth of thick (19 µm), crack‐free, and pure GaN layers on Si with the lowest threading dislocation density of 1.1 × 107 cm?2 achieved to date in GaN‐on‐Si is demonstrated. With these advances, the first vertical GaN metal–insulator–semiconductor field‐effect transistors on Si substrates with low leakage currents and high on/off ratios paving the way for a cost‐effective high power device paradigm on an Si CMOS platform are demonstrated  相似文献   

8.

Flexible, free-standing composite films of poly(vinylidene fluoride) (PVDF) with Gallium Nitride (GaN) as fillers, in varying concentrations, were synthesized by sol–gel method. Modulations in the microstructural, morphological and dielectric properties, due to the addition of fillers, were investigated. Modifications in the spherocrystal structure, their dimensions and their number density were observed. Microstructural studies confirmed the presence of GaN nanoparticles in the matrix. FTIR and Raman spectroscopy revealed the presence of the three polymorphs of PVDF in the composite films. The dielectric constant of the composite films were found to increase with the increase in the filler concentration, to almost?~?6 times that of the value for the pristine film due to the interfacial polarization playing between the polymer chains and the filler nanoparticles. Low values of dielectric constant at higher frequencies were observed due to the contribution of dipolar polarization. A peak-to-peak voltage of ~?5.4?V, from a triboelectric nanogenerator fabricated using a 1 wt% composite films, was obtained.

  相似文献   

9.
GaN community has recently recognized that it is imperative that the extended, and point defects in GaN and related materials, and the mechanisms for their formation are understood. This is a first and an important step, which must be followed by defect reduction before full implementation of this material and its allied binaries/ternaries in devices. This review is based on a recent concerted effort to establish benchmarks as far as defects are concerned, and identify the basic issues involved. Samples were analyzed for extended defects by TEM and chemical etches, for polarity by electric force microscopy and convergent beam electron diffraction (CBED), for point defects by DLTS, for optical quality and deep defects by photoluminescence (PL), for vacancies by positron annihilation, for donor and acceptor like states within the gap by ODMR and EPR, and for carrier transport targeted for defects and impurities by variable temperature and magnetic field-dependent Hall measurements.Hydride VPE samples grown at Lincoln Laboratories with 1.5, 5.5 and 55 μm thicknesses were investigated for defects by TEM, and their polarity was found to be Ga-polarity, as expected, by CBDE combined with simulations. The density of misfit dislocations at the substrate/EPI interface was determined to be on the order of 1013 cm−2 based on high-resolution electron microscopy images. The threading dislocation density decreased gradually with distance from the interface, reaching a value of about 108 cm−2 at the surface of a 55 μm film. A 200 μm thick laser separated and free-standing HVPE grown GaN template grown at Samsung was also characterized similarly. The free surface and substrate sides were confirmed to be Ga- and N-polarity, respectively. The density of dislocations near the N-face was determined to be, in order, (3±1)×107 and (4±1)×107 by cross-sectional TEM and plan-view TEM, respectively. Identical observations on the Ga-face revealed the defect concentration to be less than 1×107 cm−2 by plan-view TEM and 5×105 cm−2 by cross-sectional TEM.Defects in a 10 μm thick GaN layer grown by HVPE at Lincoln Laboratory have been investigated by photo electrochemical (PEC) etching, and by wet etching in hot H3PO4 acid and molten KOH. Threading vertical wires (i.e. whiskers) and hexagonal-shaped etch pits are formed on the etched sample surfaces by PEC and wet etching, respectively. Using atomic force microscopy, one finds the density of “whisker-like” features to be 2×109 cm−2, the same value found for the etch-pit density on samples etched with both H3PO4 and molten KOH. Values agree well with TEM results.A free standing GaN template has been characterized for its structural and optical properties using X-ray diffraction, defect delineation etch followed by imaging with atomic force microscopy (AFM). The Ga-face and the N-face of the c-plane GaN exhibited a wide variation in terms of the defect density. The defect concentrations on Ga- and N-faces were about 5×105 cm−2 for the former and about 1×107 cm−2 for the latter, again in good agreement with TEM results mentioned above.High resolution X-ray rocking curves (omega scans) were measured. The [0 0 2] symmetric and [1 0 4] asymmetric peaks in 10 μm thick HVPE films had FWHM values between 5.8 and 7.9 arcmin, and 3.9 and 5.2 arcmin, respectively. The Samsung template investigated had wide diffraction peaks (20.6 and 24 arcmin for [0 0 2] and [1 0 4] diffractions, respectively) on the Ga-face, similar for the N-face, when a 2 mm slit size was used. When the slit size was reduced to 0.02 mm, the Ga- and N-face [0 0 2] peaks reduced to 69 and 160 arcsec. A bowing radius of 1.2 m was calculated to account for increased broadening with wider slits.In the HVPE layer studied, SIMS investigations indicate that both O and Si concentrations drop rapidly away from the surface into the sample — mainly due in part to the artifact of the technique and in part due to condensates on the surface of the sample, down to about 1017 cm−3 for Si and high 1016 cm−3 for O. The Ga-face profile in the Samsung template indicated levels below mid-1016 cm−3 for all three of the impurities. The picture is different for the N-side, however, as it was juxtaposed to the substrate during growth and was mechanically polished after laser separation. The impurity concentration on this face, depending on the species, is some 1–3 orders of magnitude higher than the case for the Ga-face.Transport properties as a function of the layer thickness, ranging from about 1 to 68 μm, while all the other parameters being the same, as they evolve from the sapphire/GaN interface and up were determined in epitaxial layers. A strong dependence on distance from the interface was observed with the averaged mobility figures increasing from 190 cm2/V s in the 5 μm film to 740 cm2/V s in the 68 μm film. The preliminary differential Hall measurements indicate that the mobility at the surface of the thick layer is about 1200 cm2/V s. Electron mobilities in free-standing template were 1425 cm2/V s at T=273 K and 7385 cm2/V s at T=48.2 K. By using the most recent unscreened acoustic deformation potential and allowing only the acceptor concentration to vary (2.4×1015 cm−3 for the best fit), one obtains an excellent fit to the measured mobility in the temperature range of 30–273 K by using an iterative BTE method. In addition, an excellent fit for the temperature-dependent electron concentration was also obtained utilizing the acceptor concentration determined from the fit to the Hall data, and the charge balance equation. This led to a donor concentration of 1.6×1016 cm−3, and activation energy of 26 meV, the latter being the highest reported in the literature for GaN.In the free-standing template, the Γ5 and Γ6 free excitons were identified from emission measurements by utilizing polarization geometries where the E field is perpendicular to the c-axis, favoring the Γ5 exciton, and E field parallel to the c-axis (incident beam from the edge of the wafer) favoring the Γ6 exciton. Focusing on the defect region of the PL spectrum, the N-face of the sample exhibited the usual yellow line. However, the Ga-face exhibited a broad band encompassing both yellow and green bands. The yellow luminescence in the free-standing template is weak and can be easily saturated. In contrast, the green luminescence is dominant and is attributed to the isolated defect involving gallium vacancy, whereas the yellow luminescence is related to the same defect bound to dislocation or surface-bound structural defect.Deep centers have been characterized by DLTS in HVPE-grown GaN epilayers of different thickness and dislocation densities, and templates. The main deep centers, such as A1, B, and D, show higher concentrations in thinner samples, which suggests a correlation to the high dislocation densities. Based on the anti-correlation between A1 and B, which is observed in thin HVPE-GaN layers, the defect B was tentatively attributed to NGa. Centers A1 and E1 found in thin HVPE-GaN are very similar to centers A2 and E induced by electron-irradiation, indicating their point-defect nature. Centers A, C, and D are not affected by 1 MeV electron-irradiation, thus ruling out the possibility of these centers being identical to any EI-induced centers; however, their nature remains unknown. As the layer thickness decreases, an increase of deep centers, both in species and concentrations, was clearly observed, which is believed to be closely associated with the significant increase of threading dislocations as revealed by TEM. Based on a comparison with EI-induced centers and an observation of anti-correlation, A1 is tentatively assigned to NI, and B to NGa. The template exhibited a new trap B′, with parameters ET=0.53 eV and σT=1.5×10−15 cm2 on the Ga-face, in addition to the four traps commonly observed in various epitaxial GaN layers. For the N-face, an N vacancy-related trap E1, with ET=0.18 eV and σT=4×10−17 cm2, was observed. On the other hand, the Ga-face sample contained trap C, with ET=0.35 eV and σT=1.6×10−15 cm2. This trap may be related to surface damage caused by the RIE process employed.Electron beam and optical depth-profiling of thick (5.5–68 μm) n-type HVPE-GaN samples have been carried out using electron beam-induced current (EBIC) and micro-PL to determine the minority carrier diffusion length, L, and minority carrier lifetime. The minority carrier diffusion length increased linearly from 0.25 μm, at a distance of about 5 μm from the GaN/sapphire interface, to 0.63 μm at the GaN surface for a 36 μm thick sample. The increase in L was accompanied by a corresponding increase in PL band-to-band radiative transition intensity as a function of distance from the GaN/sapphire interface. These observations in PL intensity and minority carrier diffusion length have been attributed to a reduced carrier mobility and lifetime at the interface and to scattering at threading dislocations.Positron annihilation experiments have been conducted in HVPE films with varying thicknesses from 1 to 68 μm. Mg-doped samples and bulk GaN platelets have also been investigated and the behavior of positron annihilation in Mg-doped samples established. Unlike the Mg-doped samples, the positron lifetime in the HVPE samples increased with decreasing lattice temperature. This was interpreted as acceptors in these n-type samples being due to Ga vacancies as opposed to relatively shallow acceptor impurities. The similarities in the behavior of these samples and those investigated previously where the III/V ratio was changed also lend support to the Ga vacancy argument. Previous investigations established that as the III/V is lowered by increasing the ammonia flow during the growth, the Ga vacancy concentration increased. Using Mg-doped samples as a standard, the vacancy concentration was determined to be about 1017 cm−3 near the surface for the layer with a thickness greater than 30 μm. Assuming that the growth parameters in the set of layers with varying thicknesses that were investigated are the same, the Ga vacancy concentration increases to mid-1019 cm−3 near the interface. Since the interfacial region is n-type and highly conductive, this region must also contain even larger concentrations of O and/or N vacancies which lead to n-type material. SIMS results already indicate mid-1019 cm−3 levels of O being present in this region. This has been attributed to O out-diffusion from sapphire as previously reported.FTIR, ODMR and EPR measurements have been performed in GaN layers and templates. In FTIR measurements, two absorption bands corresponding to binding energies of 30.9 (Si) and 33.9 meV were found. Splitting of the binding energies with magnetic field is consistent with an effective mass of 0.22m0. Angular rotation studies were performed with the magnetic field oriented perpendicular and parallel to the c-axis to provide symmetry information. The ODMR on the 2.2 eV peak in a 5–10 μm thick GaN layer, the notorious yellow emission, showed signatures of shallow donor (effective mass like) and deep defect centers with g-values of 1.95 and 1.99, respectively. The 3.27 eV peak with resolved LO phonon replicas, which is the blue peak observed in many GaN films grown by a variety of methods, is attributed to transitions involving shallow acceptors with g2.1 and g2.0. ODMR on the 2.4 eV “green” PL band in the free-standing template also revealed evidence for shallow donors with a g-value of 1.95 and other deeper centers. The larger line width of the shallow donor signal from the template, relative to that found for the epitaxial layers, is indicative of a lower concentration of this center, which leads to an increased hyperfine interaction. EPR studies confirmed the notable difference between the epilayers and the template, particularly the larger line widths in the template due to the lower concentration of shallow donors. Specifically, the free-standing sample has about 6×1015 cm−3 uncompensated donors while the epilayers have a concentration about a factor of four higher.Calculations indicate that incorporation of Si has a negligible effect on the lattice constant, but O and Mg can lead to an observable expansion of the lattice. Since values of the GaN lattice constant have often been based on bulk crystals that are now known to contain large concentrations of oxygen, the “true” GaN lattice constant is actually smaller than what has been measured for such crystals. Boron is an unintentional impurity that can be introduced during MBE growth. There has been speculation about whether B might act as an acceptor in GaN; this would require it to be incorporated on the nitrogen site. Computations indicate that incorporating B on the N site is energetically unfavorable. Even if it did incorporate there, it would act as a deep, rather than a shallow acceptor. Formation energies of H in AlN and GaN have also been calculated. The behavior of H in AlN is very similar to GaN: H+ dominates in p-type, H in n-type. Surprisingly, H in InN behaves exclusively as a donor, i.e. it is not amphoteric as in GaN and AlN, but actually contributes to the n-type conductivity of the material.Scanning thermal microscopy (SThM) has been applied to measure the local thermal conductivity of epitaxial GaN as it is affected to a large extent by phonon scattering, and a closer to the true value of this parameter can be obtained by a local measurement in areas of lower defect concentration such as those found in the wing regions of lateral epitaxially grown GaN. The method relies on a thermo-resistive tip forming one quadrant of a Winston bridge. The bridge is balanced with the tip heated followed by bringing the tip in contact with the sample under test which cools down due to thermal dissipation. However, the feedback circuit attempts to keep the thermo-resistance and thus the tip temperature the same. The square of the feedback voltage necessary for this is proportional to the thermal conductivity. Accurate values can be obtained with calibration using known substrates such as GaSb, GaAs, InP, Si and Al metal. Using SThM, thermal conductivity, κ, values of 2.0–2.1 W/cm K in the wing regions of lateral epitaxially grown GaN, 1.70–1.75 W/cm K in HVPE grown GaN, and 3.0–3.3 W/cm K for free-standing AlN have been measured.  相似文献   

10.
The GaN film was grown on the (111) silicon-on-insulator (SOI) substrate by metal-organic chemical vapor deposition and then annealed in the deposition chamber. A multiple beam optical stress sensor was used for the in-situ stress measurement, and X-ray diffraction (XRD) and Raman spectroscopy were used for the characterization of GaN film. Comparing the characterization results of the GaN films on the bulk silicon and SOI substrates, we can see that the Raman spectra show the 3.0 cm− 1 frequency shift of E2(TO), and the full width at half maximum of XRD rocking curves for GaN (0002) decrease from 954 arc sec to 472 arc sec. The results show that the SOI substrates can reduce the tensile stress in the GaN film and improve the crystalline quality. The annealing process is helpful for the stress reduction of the GaN film. The SOI substrate with the thin top silicon film is more effective than the thick top silicon film SOI substrate for the stress reduction.  相似文献   

11.
High-quality GaN films are deposited on freestanding thick diamond films by electron cyclotron resonance plasma-enhanced metal organic chemical vapour deposition (ECR-PEMOCVD). Trimethyl gallium (TMGa) and N2 are applied as precursors and different N2 fluxes are used to achieve high-quality GaN films. The influence of N2 flux on the properties of GaN films is systematically investigated by X-ray diffraction analysis (XRD), reflection high energy electron diffraction (RHEED), atomic force microscopy (AFM) and Hall effect measurement (HL). The results show that the high-quality GaN films with small surface roughness of 4.5 nm and high c-orientation are successfully achieved at the optimized N2 flux of 90 sccm. The most significant improvements in morphological, structural, and optical properties of GaN films are obtained by using a proper N2 flux.  相似文献   

12.
GaN films have been deposited at 100–400 °C substrate temperature on Si (100) and sapphire (0001) substrates by RF reactive sputtering in an (Ar + N2) atmosphere. A (Ga + GaN) cermet target for sputtering was made by hot pressing the mixed powders of metallic Ga and ceramic GaN. The effects of substrate temperature on the GaN formation and its properties were investigated. The diffraction results showed that GaN films with a preferential (10–10) growth plane had a wurtzite crystalline structure. GaN films became smoother at higher substrate temperature. The Hall effect measurements showed the electron concentration and mobility were 1.04 × 1018 cm?3 and 7.1 cm2 V?1 s?1, respectively, for GaN deposited at 400 °C. GaN films were tested for its thermal stability at 900 °C in the N2 atmosphere. Electrical properties slightly degraded after annealing. The smaller bandgap of ~3.0 eV is explained in terms of intrinsic defects and lattice distortion.  相似文献   

13.
在Si(111)衬底上,以MOCVD方法高温外延生长的AIN为缓冲层,使用氮化物气相外延(HVPE)方法外延生长了15Km的c面GaN厚膜.并利用X射线衍射(XRD)、光致发光谱(PL)、拉曼光谱(Raman)等技术研究了GaN厚膜的结构和光学性质.分析结果表明,GaN厚膜具有六方纤锌矿结构,外延层中存在的张应力较小,...  相似文献   

14.
Hong-Di Xiao  Rong Liu  Zhao-Jun Lin 《Vacuum》2009,83(11):1393-1396
Amorphous GaN (a-GaN) films on Si (111) substrates have been deposited by RF magnetron sputtering with GaN powder target. The growth process from amorphous GaN to polycrystalline GaN is studied by XRD, SEM, PL and Raman. XRD data mean that annealing under flowing ammonia at 850-950 °C for 10 min converts a-GaN into polycrystalline GaN (p-GaN). The growth mechanism can be mostly reaction process through N3− in amorphous GaN replaced by N3− of NH3. Annealing at 1000 °C, the appearance of GaN nanowires can be understood based on the vapor-liquid-solid (VLS) mechanism. In addition, XRD, PL and Raman measurement results indicate that the quality of GaN films increases with increasing temperature. The tensile stress in the films obtained at 1000 °C is attributable to the expansion mismatch between GaN and Si, with the gallium in the film playing a negligible role.  相似文献   

15.
We explore conditions for achieving laser liftoff in epitaxially grown heterojunctions, in which single crystal thin films can be separated from their growth substrates using a selectively absorbing buried intermediate layer. Because this highly non‐linear process is subject to a variety of process instabilities, it is essential to accurately characterize the parameters resulting in liftoff. Here, we present an InP/InGaAs/InP heterojunction as a model system for such characterization. We show separation of InP thin films from single crystal InP growth substrates, wherein a ≈10 ns, Nd:YAG laser pulse selectively heats a coherently strained, buried InGaAs layer. We develop a technique to measure liftoff threshold fluences within an inhomogeneous laser spatial profile, and apply this technique to determine threshold fluences of the order 0.5 J cm?2 for our specimens. We find that the fluence at the InGaAs layer is limited by non‐linear absorption and InP surface damage at high powers, and measure the energy transmission in an InP substrate from 0 to 8 J cm?2. Characterization of the ejected thin films shows crack‐free, single crystal InP. Finally, we present evidence that the hot InGaAs initiates a liquid phase front that travels into the InP substrate during liftoff.
  相似文献   

16.
The effect of potassium-sodium niobate (KNN) powder sintering temperature on the structure and properties of the KNN/{poly(vinylidenefluoride-co-trifluoroethylene 70:30) [P(VDF-TrFE) 70:30]} composite thick films have been studied in this paper. KNN powders were sintered by solid-state reaction at different temperatures ranging from 750 to 900 °C. Then the KNN powders were used to fabricate composite thick films by casting the KNN/P(VDF-TrFE) suspension on to ITO substrates. The pyroelectric and dielectric properties of the composite thick films have been investigated systematically. It was found that sample made up of KNN ceramic powders sintered at 850 °C show optimal properties for pyroelectric appliance. The highest pyroelectric coefficient was 63 μCm?2/K and the highest detectivity figure-of-merit was 4.94 μPa1/2.  相似文献   

17.
J.X. Zhang  Y. Qu  A. Uddin  S.J. Chua 《Thin solid films》2007,515(10):4397-4400
GaN epitaxial layer was grown on Si(111) substrate by metalorganic chemical vapor deposition (MOCVD). The structure consists of 50 nm thick high-temperature grown AlN buffer layer, 150 nm thick AlGaN layer, 30 nm low-temperature grown AlN layer, 300 nm GaN layer, 50 nm AlGaN superlattice layer, followed by 100 nm GaN epitaxial layer. The low-temperature AlN interlayer and AlGaN superlattice layer were inserted as the defect-blocking layers in the MOCVD grown sample to eliminate the dislocations and improve the structural and optical properties of the GaN layer. The dislocation density at the top surface was decreased to ∼ 2.8 × 109/cm2. The optical quality was considerably improved. The photoluminescence emission at 3.42-3.45 eV is attributed to the recombination of free hole-to-donor electron. The observed 3.30 eV emission peak is assigned to be donor-acceptor transition with two longitudinal optical phonon side bands. The relationship of the peak energy and the temperature is discussed.  相似文献   

18.
Fabrication of wurtzite-type gallium nitride (GaN) thick films on HPVE-grown {0001} GaN substrates under moderate ammonothermal conditions is reported. Supercritical ammonia (NH3) as solvent and the mineralizer ammonium chloride (NH4Cl) is employed for temperature and pressure conditions of 400–550 °C and ≤135 MPa, respectively. Growth rates of 30 μm per day over long-term growth runs were obtained. The effect of surface morphology of the substrate on homoepitaxial nucleation of GaN films prepared from ammonoacid solutions is investigated. Two-dimensional nucleation is obtained for substrates etched by hot concentrated KOH prior film growth. In this case the interface between film and the ( ) substrate does not show any signs of voids or island nucleation. Cracking pattern reveals similar mechanical-elastical properties for film and substrate.  相似文献   

19.
In this study, 4.5 μm thick GaN films with graded AlxGa1?xN/AlN buffer and SiNx interlayer were prepared on 6H–SiC substrates by metal–organic chemical vapor deposition. To determine the effects of SiNx interlayer on epitaxial quality and stress state of GaN films, a series of comparative experiments were carried out by changing the deposition time and the insert location of SiNx interlayer. By optimizing growth conditions of SiNx interlayer, the full width at half maximum values of \( (0002) \) and \( (10\bar{1}2) \) rocking curves of GaN films were improved to 142 and 170 arcsec, respectively. A crack-free GaN film with a small root-mean-squared roughness of 0.21 ± 0.02 nm was achieved. Simultaneously, the reduction in threading dislocation density of GaN films was confirmed by using wet etching method. In addition, stress values in GaN films were investigated by Raman and low-temperature photoluminescence spectra, which indicated that the lower tensile stress in GaN film, the higher the film’s crystallinity.  相似文献   

20.
In this study, we report that free-standing GaN substrates grown by the hydride vapor-phase epitaxy (HVPE) are found to contain nonuniform regions with low crystal and optical quality located close to the top (near as-grown surface) and bottom (near interface between GaN/sapphire) regions of substrate cross-section. We considered that the origins of these nonuniformities were surface reconstruction by undesired residual gas reaction after crystal growth on the top regions and the individual columns forming an irregular layer in the bottom regions by lattice mismatch and difference of thermal expansion coefficient between GaN films and sapphire substrate. We used cathodoluminescence imaging and spectroscopy for analyzing these nonuniform regions. The low quality regions with high electron concentration are easily visualized using cathodoluminescence (CL). The coexistence of regions with low- and high quality allows us to explain the concurrent evidence of high substrate quality in double crystal X-ray diffraction and photoluminescence (PL).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号