首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Uncoupling of the growth hormone (GH) axis in early postpartum dairy cows is correlated with a decrease in liver GH receptor (GHR) 1A mRNA and a decrease in liver GH receptor protein. Postpartum recoupling of the GH axis is also correlated with GHR 1A mRNA and GHR protein. We hypothesized that dry matter intake (DMI) partially controls the increase in GHR 1A mRNA postpartum. Prepartum Holstein dairy cows (n = 11) were offered feed ad libitum. After calving, 6 cows were fed 70% of their expected DMI (feed restriction) for 14 d and 5 cows were fed ad libitum (control). Both groups were fed ad libitum after d 14. Liver was biopsied prepartum and on d 1, 7, 14, and 21 postpartum; blood was sampled throughout the experimental period. Rate of increase in postpartum milk production was less for feed-restricted cows. The GHR 1A mRNA decreased from prepartum to d 1 postpartum and subsequently increased. Rate of postpartum increase in GHR 1A mRNA was less in feed-restricted cows. Diminished GHR 1A persisted for at least 7 d after feed-restricted cows returned to ad libitum feeding. Liver insulin-like growth factor-I mRNA concentrations decreased from prepartum to d 1 as well, but were similar for feed restricted and control thereafter. We concluded that DMI partially controls GHR 1A mRNA expression in early postpartum dairy cows and that the decrease in GHR 1A in response to feed restriction persisted for at least 1 wk after ad libitum feeding was restored.  相似文献   

3.
4.
5.
6.
The current study was conducted to investigate the effects of 5,6-dimethylbenzimidazole (DMB) supplementation to the feed during the transition period and early lactation on the vitamin B12 supply, lactation performance, and energy balance in postpartum cows. Twenty-four prepartum Holstein dairy cows were divided into 12 blocks based on their parity and milk yield at the last lactation and were then randomly allocated to 1 of 2 treatments: a basal diet without DMB (control) or a treatment diet that contained 1.5 g of DMB/d per cow. The study started at wk 3 before the expected calving day and ended at wk 8 postpartum. The feed intake and the lactation performance were measured weekly after calving. Blood parameters were measured on d ?10, 0, 8, 15, 29, 43, and 57 relative to the calving day. Body weight was measured on the calving day and on d 57 after calving. The yields of milk, protein, and lactose in cows fed DMB were higher than in the control throughout the whole postpartum stage. On wk 8 postpartum, the vitamin B12 content in the milk and sera was greater in cows fed DMB than in the control. The overall body weight loss from wk 1 to 8 postpartum was less in cows fed DMB than in the control. The plasma content of nonesterified fatty acids and β-hydroxybutyric acid was significantly lower in cows fed DMB than in the control throughout the whole experimental stage. In conclusion, dietary DMB fed during the transition period and early lactation improved the vitamin B12 supply, milk production, and energy balance of postpartum dairy cows.  相似文献   

7.
The objective of this study was to profile phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate carboxylase (PC) mRNA expression in the liver of dairy cattle during the peripartum transition and determine changes in abundance of these mRNA in response to protein fed during the prepartum period. Thirty-eight multiparous Holstein cows were fed diets containing either 12% crude protein (CP) and 26% rumen undegradable protein (RUP), 16% CP and 26% RUP, 16% CP and 33% RUP, or 16% CP and 40% RUP on a dry-matter basis beginning 28 d before expected calving. After calving, all cows were fed a common diet through 56 d in milk (DIM). Northern analysis of RNA from liver biopsy samples obtained on days -28, -14, +1, +28, and +56 relative to calving indicated that PC and PEPCK mRNA expression were responsive to onset of lactation but not to prepartum protein or RUP concentration. Abundance of PEPCK mRNA was similar at -28, -14, and +1 DIM but was elevated by +28 and +56 DIM relative to precalving levels. Liver PC mRNA abundance was elevated on +1 DIM, remained elevated through 28 DIM, and declined to precalving levels by 56 DIM. The activity of PC enzyme was correlated (r2 = 0.89) with PC mRNA abundance. The data demonstrate increased abundance of PC mRNA during the early transition period followed by increased abundance of PEPCK mRNA during the postpartum period and suggest increased potential metabolism of lactate, pyruvate, and amino acids that contribute to the liver pyruvate pool.  相似文献   

8.
Omitting the dry period (DP) generally reduces milk production in the subsequent lactation. The aim of this study was to evaluate the effect of dietary energy source—glucogenic (G) or lipogenic (L)—and energy level—standard (std) or low—on milk production; energy balance (EB); lactogenic hormones insulin, insulin-like growth factor 1 (IGF-1), and growth hormone (GH); and lactation curve characteristics between wk 1 and 44 postpartum in cows after a 0-d or 30-d DP. Cows (n = 110) were assigned randomly to 3 transition treatments: a 30-d DP with a standard energy level required for expected milk yield [30-d DP(std)], a 0-d DP with the same energy level as cows with a 30-d DP [0-d DP(std)], and a 0-d DP with a low energy level [0-d DP(low)]. In wk 1 to 7, cows were fed the same basal ration but the level of concentrate increased to 6.7 kg/d for cows fed the low energy level and to 8.5 kg/d for cows fed the standard energy level in wk 4. From wk 8 postpartum onward, cows received a G ration (mainly consisting of corn silage and grass silage) or an L ration (mainly consisting of grass silage and sugar beet pulp) with the same energy level contrast (low or std) as in early lactation. Cows fed the G ration had greater milk, lactose, and protein yields, lower milk fat percentage, greater dry matter and energy intakes, and greater plasma IGF-1 concentration compared with cows fed the L ration. Dietary energy source did not affect EB or lactation curve characteristics. In cows with a 0-d DP, the reduced energy level decreased energy intake, EB, and weekly body weight gain, but did not affect milk production or lactation curve characteristics. A 30-d DP resulted in a greater total predicted lactation yield, initial milk yield after calving, peak milk yield, energy intake, energy output in milk, days to conception [only when compared with 0-d DP(low)], plasma GH concentration [only when compared with 0-d DP(std)], and decreased weekly body weight gain compared with a 0-d DP. A 30-d DP decreased both the increasing and the declining slope parameters of the lactation curve and the relative rate of decline in milk yield (indicating greater lactation persistency) compared with a 0-d DP, and decreased plasma insulin and IGF-1 concentration, and EB. In conclusion, feeding a G ration after wk 7 in milk improved energy intake and milk production, but did not affect EB compared with an L ration. For cows without a DP, a reduced dietary energy level did not affect milk production and lactation curve characteristics, but did decrease EB and weekly body weight gain. A 30-d DP increased milk yield and lactation persistency, but decreased milk fat and protein content, EB, and plasma insulin and IGF-1, compared with a 0-d DP.  相似文献   

9.
10.
The transition from pregnancy to lactation is marked by metabolic, hormonal, and immunological changes that have an impact on the incidence of infectious and metabolic diseases. The aim of this study was to evaluate the effect on immune function and blood metabolite concentration of limiting milk production in early lactation to reduce negative energy balance. Twenty-two multiparous Holstein cows were milked either once a day (1×) or twice a day (2×) for the first week postpartum. All cows were milked twice daily for the rest of lactation. Blood concentrations of nonesterified fatty acids (NEFA), β-hydroxybutyric acid (BHBA), calcium, bilirubin, urea, phosphorus, glucose, leptin, stanniocalcin-1, and 17β-estradiol were determined in samples collected from 5 wk before scheduled calving to 5 wk after calving. Polymorphonuclear leukocytes (PMNL) were isolated from blood to conduct assays for chemotaxis, phagocytosis, and respiratory burst. Peripheral blood mononuclear cells (PBMC) were isolated to evaluate lymphocyte proliferation and cytokine production (tumor necrosis factor-α, IL-4, and interferon-γ). Cows milked 1× produced 31% less milk than cows milked 2× during the first week of lactation. Over the following 13 wk of lactation, the milk production of cows milked 1× during the first week was 8.1% lower than for cows milked 2×. However, because the percentages of fat and protein were greater in the milk from 1× cows, the yields of milk components and energy-corrected milk were similar. Calving induced an increase in the concentrations of NEFA, BHBA, urea, and bilirubin. The increases in levels of NEFA and BHBA were greater in cows milked 2× than in cows milked 1×. During the same period, the serum glucose concentration decreased but remained greater in cows milked 1×. Serum calcium on d 4 and serum phosphorus on d 4 and 5 were greater in cows milked 1×. The differences between the 2 groups persisted beyond treatment until postpartum d 24 for NEFA and glucose and until postpartum d 14 for BHBA. After calving, the concentrations of leptin and stanniocalcin-1 decreased. During the first week postpartum, the decrease of leptin was less marked in cows milked 1×. The immune functions of PBMC and PMNL isolated from experimental cows and incubated using a standard medium did not show clear-cut peripartum immunosuppression. These variables were not significantly affected by the treatments, with the exception of interferon-γ secretion, which was greater on d 5 and 14 in cows milked 1×. In conclusion, limiting milk production in early lactation had positive effects on metabolite concentration, but larger studies are necessary to establish if this could reduce disease incidence.  相似文献   

11.
The aim of the present study was to examine the relationship between characteristics of the lactation curve, on the basis of daily milk yield, and ovulation within 3 wk postpartum as an indicator of early return to luteal activity in dairy cows. Lactation records from 46 lactating Holstein cows between calving and 305 d postpartum were studied. Milk samples were collected twice weekly between d 7 and 100 for later determination of progesterone concentrations. Occurrence of an early first ovulation was determined by an increase in milk progesterone by 3 wk after calving. Milk yield was recorded daily until 305 d postpartum, and average yield was calculated weekly. The lactation curve was characterized by 8 indices on the basis of the weekly average of milk yield as follows: a) first-week milk yield; b) peak milk yield; c) actual 305-d milk yield; d) peak week; e) difference in milk yield between the first week and peak week; f) difference in milk yield between the peak week and last week (43rd week postpartum); g) ratio of increase in milk yield between wk 1 and the week of peak yield; and h) ratio of decline in milk yield between the week of peak yield and the last week. Indices g and h were calculated as linear. The number of cows having ovulated by 3 wk postpartum was 22 (47.8%). The resumption of ovarian cycles with normal luteal phases occurred earlier in ovular cows than in anovular cows (32.0 d vs. 57.1 d). Although total milk yield did not differ between ovular and anovular cows, the ratio of increase in milk yield from the first week to the peak week (index g) in ovular cows was smaller compared with that of anovular cows (1.71 vs. 2.54). In addition, the ratio of increase in milk yield from the first week to the third week postpartum was greater in anovular cows by 3 wk postpartum (ovular = 1.43 ± 0.23 vs. anovular = 2.32 ± 0.29). In conclusion, the present study demonstrates that a greater increasing ratio of milk yield during early lactation may delay resumption of ovarian cycles after parturition. Therefore, this study is the first to demonstrate statistically that a smaller increasing ratio of milk yield (index g) during early lactation may have a beneficial effect on the first ovulation by 3 wk postpartum.  相似文献   

12.
A field study using seven Holstein herds was conducted to determine effects of prepartum milking on milk production, health disorders, and reproductive performance. In each herd, 80 cows (30% first lactation cows) were assigned 1 mo prior to expected calving date to one of two treatments: postpartum or prepartum milking. The group milked prepartum was machine-milked twice daily at regular milking intervals beginning 14 d prior to date of expected calving. The group milked postpartum was milked for the first time after calving. The day prior to calving, 36, 33, and 31% of the cows milked prepartum produced less than 4.5 kg, 4.5 to 9 kg, and greater than 9 kg of milk, respectively. No relationship existed between days milked prepartum and prepartum milk yield. Lactation milk yield and persistency were not affected by prepartum milking. Prepartum milking reduced incidence of milk fever and mastitis during the 1st mo after parturition. Treatment was not a significant source of variation for reproductive performance or body condition; however, culling was higher for cows milked postpartum. Results indicate no adverse effects on cow performance due to prepartum milking nor increase in lactation milk yield.  相似文献   

13.
Udder edema (UE) is a common condition of cows around calving, but its effects are not well characterized. The objectives of this study were to determine the associations of UE with the incidence of health disorders and with milk yield and reproduction in dairy cows in early lactation. On 3 commercial farms, UE was scored weekly on 1,346 cows, on a scale of 0 to 3, from 1 wk before calving to 3 wk after calving. Among cows with complete UE scores, 30% never had edema, 12% had edema only prepartum, 11% had it only postpartum, and 48% had edema prepartum and in at least 1 wk postpartum. Udder edema was associated with a greater incidence of clinical mastitis before 30 d in milk (5 vs. 2%). Subclinical ketosis (blood β-hydroxybutyrate ≥1.2 mmol/L) was more prevalent at wk 2 (11 vs. 6%) postpartum among cows with UE. No association was observed of UE with other diseases or culling in early lactation. In a subset of 912 cows with complete UE and 3 test-days of milk yield data, differences were observed in yield at test d 1 among UE categories. Cows with UE only prepartum produced less milk (39.9 kg/d) than cows with UE postpartum only (42.4 kg/d) and cows with UE both prepartum and postpartum (41.6 kg/d), none of which differed from cows without UE (40.9 kg/d). Udder edema was not associated with the prevalence of anovulation, or the time to or probability of pregnancy at first insemination, yet to 300 d in milk, cows that had UE postpartum had a shorter time from calving to pregnancy than cows without UE. The associations of UE with health and productivity are mixed, and the mechanisms underlying UE and its effects merit further investigation.  相似文献   

14.
The somatotropic axis consisting of growth hormone, the growth hormone receptor (GHR) insulin-like growth factor (IGF)-I, and IGF binding proteins changes with the stage of lactation and nutrition of the cow and may be 1 mechanism through which lactation and nutrition affect the establishment of pregnancy. The objective of this study was to quantify GHR, IGF-I, and IGF binding protein-2 (IGFBP-2) mRNA in liver and uterine endometrial tissue at 4 stages of lactation (40, 80, 120, and 160 days in milk) and around the time of artificial insemination. Estrus was synchronized with GnRH and PGF2α, and cows were inseminated 12 h after estrus. Uterine biopsies were collected immediately before the second injection of PGF2α (before estrus), at the initiation of standing estrus, and 4 d after estrus. Liver biopsies were collected once on 4 d after estrus. The abundance of GHR, IGF-I, and IGFBP-2 mRNA in liver and uterus was determined by real-time quantitative PCR. The amount of liver IGF-I mRNA was positively correlated with plasma IGF-I concentrations. Cows that became pregnant after AI had more GHR and IGFBP-2 mRNA in their liver than cows that did not become pregnant. There was no effect of DIM or pregnancy status on abundance of uterine mRNA; however, uterine GHR and IGF-I mRNA was most abundant at estrus. In summary, cows at different stages of lactation or with different pregnancy statuses had similar quantities of uterine mRNA. In contrast, liver quantities of mRNA differed relative to pregnancy status. These data provide evidence that liver indices of metabolic state may be indicative of pregnancy success.  相似文献   

15.
Retinol (vitamin A), alpha-tocopherol (vitamin E), and Zn are micronutrients essential for health and performance. We determined the effects of parturition, lactation, and periparturient Ca status on plasma retinol, alpha-tocopherol, and Zn in 18 Jersey cows during the 2 wk before and after parturition. Six cows developed clinical milk fever. Prepartum plasma concentrations of retinol, alpha-tocopherol, and Zn decreased progressively in all animals. A nadir was reached at 1 d postpartum when concentrations declined to 38, 47, and 67%, respectively, of prepartal baseline concentrations. Plasma Zn returned to baseline concentrations within 3 d of calving, and plasma alpha-tocopherol returned toward baseline about 10 d after calving. Plasma retinol remained below baseline concentrations throughout the first 2 wk of lactation. The decline in plasma Zn observed at calving was more severe in cows with milk fever (parturient paresis) than in cows without milk fever. The decrease in plasma retinol and alpha-tocopherol observed at parturition was similar in cows with or without milk fever. These data document an acute decline in plasma retinol, alpha-tocopherol, and Zn in the immediate periparturient period and indicate that the decline in plasma Zn is more severe in cows with milk fever.  相似文献   

16.
《Journal of dairy science》2021,104(11):11646-11659
Our aim was to evaluate the effects of a low or high dietary phosphorus (P) concentration during the dry period, followed by either a high or low dietary P concentration during the first 8 wk of lactation, on plasma Ca concentrations, feed intake, and lactational performance of dairy cattle. Sixty pregnant multiparous Holstein Friesian dairy cows were assigned to a randomized block design with repeated measurements and dietary treatments arranged in a 2 × 2 factorial fashion. The experimental diets contained 3.6 (Dry-HP) or 2.2 (Dry-LP) g of P/kg of dry matter (DM) during the dry period, and 3.8 (Lac-HP) or 2.9 (Lac-LP) g of P/kg of DM during 56 d after calving period. In dry cows, plasma Ca concentrations were 3.3% greater when cows were fed 2.2 instead of 3.6 g of P/kg of DM. The proportion of cows being hypocalcemic (plasma Ca concentrations <2 mM) in the first week after calving was lowest with the low-P diets both during the dry period and lactation. Plasma Ca concentrations in wk 1 to 8 after calving were affected by dietary P level in the dry period and in the lactation period, but no interaction between both was present. Feeding Dry-LP instead of Dry-HP diets resulted in 4.1% greater plasma Ca values, and feeding Lac-LP instead of Lac-HP diets resulted in 4.0% greater plasma Ca values. After calving, plasma inorganic phosphate (Pi) concentrations were affected by a 3-way interaction between sampling day after calving, and dietary P levels during the dry period and lactation. From d 1 to d 7 postpartum, cows fed Lac-HP had increased plasma Pi concentrations, and the rate appeared to be greater in cows fed Dry-LP versus Dry-HP. In contrast, plasma Pi concentrations decreased from d 1 to d 7 postpartum in cows fed Lac-LP, and this decrease was at a higher rate for cows fed Dry-HP versus Dry-LP. After d 7, plasma Pi concentrations remained rather constant at 1.5 to 1.6 mM when cows received Lac-HP, whereas with Lac-LP plasma Pi concentrations reached stable levels (i.e., 1.3–1.4 mM) at d 28 after calving. Milk production, DM intake, and milk concentrations of P, Ca, fat, protein, and lactose were not affected by any interaction nor the levels of dietary P. It is concluded that the feeding of diets containing 2.2 g of P/kg of DM during the last 6 wk of the dry period and 2.9 g of P/kg of DM during early lactation increased plasma Ca levels when compared with greater dietary P levels. These low-P diets may be instrumental in preventing hypocalcemia in periparturient cows and do not compromise DM intake and milk production. Current results suggest that P requirements in dairy cows during dry period and early lactation can be fine-tuned toward lower values than recommended by both the National Research Council and the Dutch Central Bureau for Livestock Feeding. Caution however is warranted to extrapolate current findings to entire lactations because long-term effects of feeding low-P diets containing 2.9 of g/kg of DM on production and health needs further investigation.  相似文献   

17.
Blood flow and net nutrient fluxes for portal-drained viscera (PDV) and liver (total splanchnic tissues) were measured at 19 and 9 d prepartum and at 11, 21, 33, and 83 d in milk (DIM) in 5 multiparous Holstein-Friesian cows. Cows were fed a grass silage-based gestation ration initially and a corn silage-based lactation ration peripartum and postpartum. Meals were fed at 8-h intervals and hourly (n = 8) measures of splanchnic metabolism were started before (0730 h and 0830 h) feeding at 0830 h. Dry matter intakes (DMI) at 19 and 9 d prepartum were not different. Metabolism changes measured from 19 to 9 d prepartum were lower arterial insulin and acetate, higher arterial nonesterified fatty acids and increased net liver removal of glycerol. After calving, PDV and liver blood flow and oxygen consumption more than doubled as DMI and milk yield increased, but 85 and 93% of the respective increases in PDV and liver blood flow at 83 DIM had occurred by 11 DIM. Therefore, factors additional to DMI must also contribute to increased blood flow in early lactation. Most postpartum changes in net PDV and liver metabolism could be attributed to increases in DMI and digestion or increased milk yield and tissue energy loss. Glucose release was increasingly greater than calculated requirements as DIM increased, presumably as tissue energy balance increased. Potential contributions of lactate, alanine, and glycerol to liver glucose synthesis were greatest at 11 DIM but decreased by 83 DIM. Excluding alanine, there was no evidence of an increased contribution of amino acids to liver glucose synthesis is required in early lactation. Increased net liver removal of propionate (69%), lactate (20%), alanine (8%), and glycerol (4%) can account for increased liver glucose release in transition cows from 9 d before to 11 d after calving.  相似文献   

18.
The primary objective of this study was to identify relationships between endometritis and metabolic state during the calving transition and early lactation periods. A subset of mixed age and breed dairy cows (n = 78) from a seasonal, pasture-grazed herd of 389 cows was examined. The selected cows were grouped as having endometritis at d 42 postpartum or being unaffected by endometritis. Endometritis was defined as >6% (upper quartile) of uterine nucleated cells being polymorphonuclear cells (H-PMN; n = 38); unaffected by endometritis was defined as ≤1% of nucleated cells being polymorphonuclear (L-PMN; n = 40). Milk yield was determined at each milking, and milk composition (fat and protein) was determined at 2-wk intervals. Blood samples collected on d −14, 0 (d of calving), 4, 7, 14, 28, and 42 were analyzed for indicators of energy status (nonesterified fatty acids, glucose, and urea), liver function (albumin, globulin, glutamate dehydrogenase, and aspartate aminotransferase), inflammation (haptoglobin), and mineral status (Ca and Mg). Samples collected weekly from d 21 to 63 or 70 were analyzed for progesterone content. The postpartum anovulatory interval was defined to end on the first day postpartum that plasma progesterone concentration was ≥1 ng/mL. A greater percentage of H-PMN cows failed to ovulate before d 63 or 70 (34%) compared with L-PMN cows (10%), although the proportions of cows ovulating within either polymorphonuclear group was similar through d 56 postpartum. Plasma concentrations of albumin and the albumin:globulin ratio were consistently lower in H-PMN cows. Plasma Mg was lower, whereas glutamate dehydrogenase and aspartate aminotransferase were higher, in H-PMN cows during early lactation compared with L-PMN cows. Circulating metabolites indicative of energy status (nonesterified fatty acids, glucose, and urea) were not different between polymorphonuclear groups. Among 3- to 5-yr-old cows, daily milk yield for the first 42 d after calving was lower for H-PMN cows than for L-PMN cows. Among cows >5 yr old, protein percentage was lower in H-PMN cows compared with L-PMN cows. In summary, endometritis at 42 d postpartum in the herd studied was associated with an increased likelihood of remaining anovulatory. These cows had lower albumin concentrations throughout the calving transition period, perhaps indicating impaired liver function, with lower plasma Mg and evidence of hepatocellular damage in early lactation. Similar profiles of nonesterified fatty acids and glucose indicated that energy status was not a risk factor for endometritis.  相似文献   

19.
Tremendous metabolic and endocrine adjustments must be made as dairy cows move from late gestation to early lactation. Requirements for glucose and metabolizable energy increase two- to threefold from 21 d before to 21 d after parturition. The liver must adapt quickly to provide the increased glucose needed to support high milk production, and to process the flood of nonesterified fatty acids taken up from extensive mobilization of adipose triglycerides. While the end results of these adaptations are well known, much less is known about the cellular and molecular mechanisms underpinning hepatic adaptation to lactation. Increases in metabolic activity per gram of liver tissue, not just increased liver mass, are responsible for increased metabolism. Compared with activities present at 21 d before parturition, the capacity of liver tissue isolated at 1 d postpartum to convert alanine (an important glucogenic amino acid) to glucose increases more on a percentage basis than does gluconeogenic capacity from propionate. Likewise, hepatic abundance of mRNA for pyruvate carboxylase increases around calving, whereas mRNA for phosphoenolpyruvate carboxykinase does not. These changes in gluconeogenic enzymes suggest that amino acids from body and feed protein may be critically important sources of glucose for peripartal cows. Hepatic tissue from cows 1 d postpartum has greater rates of palmitate esterification, total and peroxisomal beta-oxidation of palmitate, and activity of mitochondrial carnitine palmitoyltransferase than hepatic tissue from the same cows 21 d prepartum. Prepartal nutrition has been shown to modulate some of these metabolic adaptations in the liver. Effects of hormones and cytokines that mediate adaptive responses to environmental and infectious stressors (or the lack of “cow comfort”) have not been investigated. Techniques of modern biochemistry promise to further our understanding of the mechanisms of metabolic adaptation during the peripartal period, and to quantify the effects of nutrition and environment during pre- and postpartum periods on hepatic glucose and lipid metabolism.  相似文献   

20.
《Journal of dairy science》2022,105(5):4370-4392
Phosphorus in bovine nutrition is under ongoing scrutiny because of concerns with excessive amounts of P excreted in manure contributing to environmental pollution. Feeding rations with excessive P content, however, still remains common practice, particularly during the transition period, as limited P supply in late gestation and early lactation is thought to present a risk for health and productivity of high-yielding dairy cows. The objectives of this study were to investigate the effect of restricted P supply during the last 4 wk of pregnancy on Ca and P homeostasis during the transition period in high-yielding dairy cows, and to identify possible effects on metabolism and productivity throughout the following lactation. Thirty late-pregnant multiparous dairy cows were randomly assigned to either a dry cow diet with low (LP) or adequate P (AP) content [0.16 and 0.30% P in dry matter (DM), respectively] to be fed in the 4 wk before calving. After calving all cows received the same ration with adequate P content (0.46% P in DM). Blood, milk, and liver tissue samples were obtained during the dry period and the following lactation, DM intake (DMI), body weight, milk production, and disease occurrence were monitored. Plasma was assayed for the concentrations of P, Ca, Na, and K, metabolic parameters, and liver enzyme activities. Liver tissue was analyzed for mineral, triglyceride, cholesterol, and water contents. Repeated-measures ANOVA was used to identify treatment, time, and treatment × time interaction effects. Cows fed LP had lower plasma P concentrations ([Pi]) than AP cows during restricted P feeding, reaching a nadir of 1.1 mmol/L immediately before calving. After calving, plasma [Pi] of LP cows was at or above the level of AP cows and within the reference range for cattle. Symptoms assumed to be associated with hypophosphatemia were not observed, but plasma Ca was higher from 1 wk before to 1 wk after calving in LP cows, which was associated with a numerically lower incidence of clinical and subclinical hypocalcemia in LP cows. Both treatments had a similar 305-d milk yield (12,112 ± 1,298 kg for LP and 12,229 ± 1,758 kg for AP cows) and similar DMI. Plasma and liver tissue biochemical analysis did not reveal treatment effects on energy, protein, or lipid metabolism. The results reported here indicate that restricted dietary P supply during the dry period positively affected the Ca homeostasis of periparturient dairy cows but did not reveal negative effects on DMI, milk production, or metabolic activity in the following lactation. Restriction of P during the dry period was associated with hypophosphatemia antepartum but neither exacerbated postparturient hypophosphatemia, which is commonly observed in fresh cows, nor was associated with any clinical or subclinical indication of P deficiency in early lactation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号