首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An instance of the path hitting problem consists of two families of paths, and ℋ, in a common undirected graph, where each path in ℋ is associated with a non-negative cost. We refer to and ℋ as the sets of demand and hitting paths, respectively. When p∈ℋ and share at least one mutual edge, we say that p hits q. The objective is to find a minimum cost subset of ℋ whose members collectively hit those of . In this paper we provide constant factor approximation algorithms for path hitting, confined to instances in which the underlying graph is a tree, a spider, or a star. Although such restricted settings may appear to be very simple, we demonstrate that they still capture some of the most basic covering problems in graphs. Our approach combines several novel ideas: We extend the algorithm of Garg, Vazirani and Yannakakis (Algorithmica, 18:3–20, 1997) for approximate multicuts and multicommodity flows in trees to prove new integrality properties; we present a reduction that involves multiple calls to this extended algorithm; and we introduce a polynomial-time solvable variant of the edge cover problem, which may be of independent interest. An extended abstract of this paper appeared in Proceedings of the 14th Annual European Symposium on Algorithms, 2006. This work is part of D. Segev’s Ph.D. thesis prepared at Tel-Aviv University under the supervision of Prof. Refael Hassin.  相似文献   

2.
Recently, due to the rapid growth of electronic data having graph structures such as HTML and XML texts and chemical compounds, many researchers have been interested in data mining and machine learning techniques for finding useful patterns from graph-structured data (graph data). Since graph data contain a huge number of substructures and it tends to be computationally expensive to decide whether or not such data have given structural features, graph mining problems face computational difficulties. Let be a graph class which satisfies a connected hereditary property and contains infinitely many different biconnected graphs, and for which a special kind of the graph isomorphism problem can be computed in polynomial time. In this paper, we consider learning and mining problems for  . Firstly, we define a new graph pattern, which is called a block preserving graph pattern (bp-graph pattern) for  . Secondly, we present a polynomial time algorithm for deciding whether or not a given bp-graph pattern matches a given graph in  . Thirdly, by giving refinement operators over bp-graph patterns, we present a polynomial time algorithm for finding a minimally generalized bp-graph pattern for  . Outerplanar graphs are planar graphs which can be embedded in the plane in such a way that all of vertices lie on the outer boundary. Many pharmacologic chemical compounds are known to be represented by outerplanar graphs. The class of connected outerplanar graphs satisfies the above conditions for  . Next, we propose two incremental polynomial time algorithms for enumerating all frequent bp-graph patterns with respect to a given finite set of graphs in  . Finally, by reporting experimental results obtained by applying the two graph mining algorithms to a subset of the NCI dataset, we evaluate the performance of the two graph mining algorithms.  相似文献   

3.
Given a multivariate polynomial P(X 1,…,X n ) over a finite field , let N(P) denote the number of roots over . The modular root counting problem is given a modulus r, to determine N r (P)=N(P)mod r. We study the complexity of computing N r (P), when the polynomial is given as a sum of monomials. We give an efficient algorithm to compute N r (P) when the modulus r is a power of the characteristic of the field. We show that for all other moduli, the problem of computing N r (P) is -hard. We present some hardness results which imply that our algorithm is essentially optimal for prime fields. We show an equivalence between maximum-likelihood decoding for Reed-Solomon codes and a root-finding problem for symmetric polynomials. P. Gopalan’s and R.J Lipton’s research was supported by NSF grant CCR-3606B64. V. Guruswami’s research was supported in part by NSF grant CCF-0343672 and a Sloan Research Fellowship.  相似文献   

4.
A traveling salesman game is a cooperative game . Here N, the set of players, is the set of cities (or the vertices of the complete graph) and c D is the characteristic function where D is the underlying cost matrix. For all SN, define c D (S) to be the cost of a minimum cost Hamiltonian tour through the vertices of S∪{0} where is called as the home city. Define Core as the core of a traveling salesman game . Okamoto (Discrete Appl. Math. 138:349–369, [2004]) conjectured that for the traveling salesman game with D satisfying triangle inequality, the problem of testing whether Core is empty or not is -hard. We prove that this conjecture is true. This result directly implies the -hardness for the general case when D is asymmetric. We also study approximately fair cost allocations for these games. For this, we introduce the cycle cover games and show that the core of a cycle cover game is non-empty by finding a fair cost allocation vector in polynomial time. For a traveling salesman game, let and SN, x(S)≤εc D (S)} be an ε-approximate core, for a given ε>1. By viewing an approximate fair cost allocation vector for this game as a sum of exact fair cost allocation vectors of several related cycle cover games, we provide a polynomial time algorithm demonstrating the non-emptiness of the log 2(|N|−1)-approximate core by exhibiting a vector in this approximate core for the asymmetric traveling salesman game. We improve it further by finding a -approximate core in polynomial time for some constant c. We also show that there exists an ε 0>1 such that it is -hard to decide whether ε 0-Core is empty or not. A preliminary version of the paper appeared in the third Workshop on Approximation and Online Algorithms (WAOA), 2005.  相似文献   

5.
We consider the problem of approximately integrating a Lipschitz function f (with a known Lipschitz constant) over an interval. The goal is to achieve an additive error of at most ε using as few samples of f as possible. We use the adaptive framework: on all problem instances an adaptive algorithm should perform almost as well as the best possible algorithm tuned for the particular problem instance. We distinguish between and , the performances of the best possible deterministic and randomized algorithms, respectively. We give a deterministic algorithm that uses samples and show that an asymptotically better algorithm is impossible. However, any deterministic algorithm requires samples on some problem instance. By combining a deterministic adaptive algorithm and Monte Carlo sampling with variance reduction, we give an algorithm that uses at most samples. We also show that any algorithm requires samples in expectation on some problem instance (f,ε), which proves that our algorithm is optimal.  相似文献   

6.
Kierstead et al. (SIAM J Discret Math 8:485–498, 1995) have shown 1 that the competitive function of on-line coloring for -free graphs (i.e., graphs without induced path on 5 vertices) is bounded from above by the exponential function . No nontrivial lower bound was known. In this paper we show the quadratic lower bound . More precisely, we prove that is the exact competitive function for ()-free graphs. In this paper we also prove that 2 - 1 is the competitive function of the best clique covering on-line algorithm for ()-free graphs.  相似文献   

7.
Relations between states and maps, which are known for quantum systems in finitedimensional Hilbert spaces, are formulated rigorously in geometrical terms with no use of coordinate (matrix) interpretation. In a tensor product realization they are represented simply by a permutation of factors. This leads to natural generalizations for infinite-dimensional Hilbert spaces and a simple proof of a generalized Choi Theorem. The natural framework is based on spaces of Hilbert-Schmidt operators and the corresponding tensor products of Hilbert spaces. It is proved that the corresponding isomorphisms cannot be naturally extended to compact (or bounded) operators, nor reduced to the trace-class operators. On the other hand, it is proven that there is a natural continuous map from trace-class operators on (with the nuclear norm) into compact operators mapping the space of all bounded operators on into trace class operators on (with the operator-norm). Also in the infinite-dimensional context, the Schmidt measure of entanglement and multipartite generalizations of state-maps relations are considered in the paper.  相似文献   

8.
We study an online job scheduling problem arising in networks with aggregated links. The goal is to schedule n jobs, divided into k disjoint chains, on m identical machines, without preemption, so that the jobs within each chain complete in the order of release times and the maximum flow time is minimized. We present a deterministic online algorithm with competitive ratio , and show a matching lower bound, even for randomized algorithms. The performance bound for we derive in the paper is, in fact, more subtle than a standard competitive ratio bound, and it shows that in overload conditions (when many jobs are released in a short amount of time), ’s performance is close to the optimum. We also show how to compute an offline solution efficiently for k=1, and that minimizing the maximum flow time for k,m≥2 is -hard. As by-products of our method, we obtain two offline polynomial-time algorithms for minimizing makespan: an optimal algorithm for k=1, and a 2-approximation algorithm for any k. W. Jawor and M. Chrobak supported by NSF grants OISE-0340752 and CCR-0208856. Work of C. Dürr conducted while being affiliated with the Laboratoire de Recherche en Informatique, Université Paris-Sud, 91405 Orsay. Supported by the CNRS/NSF grant 17171 and ANR Alpage.  相似文献   

9.
The interest is in characterizing insightfully the power of program self-reference in effective programming systems ( ), the computability-theoretic analogs of programming languages (for the partial computable functions). In an in which the constructive form of Kleene’s Recursion Theorem (KRT) holds, it is possible to construct, algorithmically, from an arbitrary algorithmic task, a self-referential program that, in a sense, creates a self-copy and then performs that task on the self-copy. In an in which the not-necessarily-constructive form of Kleene’s Recursion Theorem (krt) holds, such self-referential programs exist, but cannot, in general, be found algorithmically. In an earlier effort, Royer proved that there is no collection of recursive denotational control structures whose implementability characterizes the in which KRT holds. One main result herein, proven by a finite injury priority argument, is that the in which krt holds are, similarly, not characterized by the implementability of some collection of recursive denotational control structures. On the positive side, however, a characterization of such of a rather different sort is shown herein. Though, perhaps not the insightful characterization sought after, this surprising result reveals that a hidden and inherent constructivity is always present in krt. This paper is an expanded version of [6]. This paper received support from NSF Grant CCR-0208616. Know thyself. Greek proverb  相似文献   

10.
The h-h/2-strategy is one well-known technique for the a posteriori error estimation for Galerkin discretizations of energy minimization problems. One considers to estimate the error , where is a Galerkin solution with respect to a mesh and is a Galerkin solution with respect to the mesh obtained from a uniform refinement of . This error estimator is always efficient and observed to be also reliable in practice. However, for boundary element methods, the energy norm is non-local and thus the error estimator η does not provide information for a local mesh-refinement. We consider Symm’s integral equation of the first kind, where the energy space is the negative-order Sobolev space . Recent localization techniques allow to replace the energy norm in this case by some weighted L 2-norm. Then, this very basic error estimation strategy is also applicable to steer an h-adaptive algorithm. Numerical experiments in 2D and 3D show that the proposed method works well in practice. A short conclusion is concerned with other integral equations, e.g., the hypersingular case with energy space and , respectively, or a transmission problem. Dedicated to Professor Ernst P. Stephan on the occasion of his 60th birthday.  相似文献   

11.
Krivine presents the  machine, which produces weak head normal form results. Sestoft introduces several call-by-need variants of the  machine that implement result sharing via pushing update markers on the stack in a way similar to the TIM and the STG machine. When a sequence of consecutive markers appears on the stack, all but the first cause redundant updates. Improvements related to these sequences have dealt with either the consumption of the markers or the removal of the markers once they appear. Here we present an improvement that eliminates the production of marker sequences of length greater than one. This improvement results in the  machine, a more space and time efficient variant of . We then apply the classic optimization of short-circuiting operand variable dereferences to create the call-by-need  machine. Finally, we combine the two improvements in the  machine. On our benchmarks this machine uses half the stack space, performs one quarter as many updates, and executes between 27% faster and 17% slower than our ℒ variant of Sestoft’s lazy Krivine machine. More interesting is that on one benchmark ℒ, , and consume unbounded space, but consumes constant space. Our comparisons to Sestoft’s Mark 2 machine are not exact, however, since we restrict ourselves to unpreprocessed closed lambda terms. Our variant of his machine does no environment trimming, conversion to deBruijn-style variable access, and does not provide basic constants, data type constructors, or the recursive let. (The Y combinator is used instead.)  相似文献   

12.
We consider the management of FIFO buffers for network switches providing differentiated services. In each time step, an arbitrary number of packets arrive and only one packet can be sent. The buffer can store a limited number of packets and, due to the FIFO property, the sequence of sent packets has to be a subsequence of the arriving packets. The differentiated service model is abstracted by attributing each packet with a value according to its service level. A buffer management strategy can drop packets, and the goal is to maximize the sum of the values of sent packets. For only two different packet values, we introduce the account strategy and prove that this strategy achieves an optimal competitive ratio of if the buffer size tends to infinity and an optimal competitive ratio of for arbitrary buffer sizes. For general packet values, the simple preemptive greedy strategy (PG) is studied. We show that PG achieves a competitive ratio of which is the best known upper bound on the competitive ratio of this problem. In addition, we give a lower bound of on the competitive ratio of PG which improves the previously known lower bound. As a consequence, the competitive ratio of PG cannot be further improved significantly. Supported by the DFG grant WE 2842/1. A preliminary version of this paper appeared in Proceedings of the 14th Annual European Symposium on Algorithms (ESA), 2006.  相似文献   

13.
On the complexity of graph self-assembly in accretive systems   总被引:1,自引:1,他引:0  
We study the complexity of the Accretive Graph Assembly Problem (). An instance of consists of an edge-weighted graph G, a seed vertex in G, and a temperature τ. The goal is to determine if the graph G can be assembled by a sequence of vertex additions starting from the seed vertex. The edge weights model the forces of attraction and repulsion, and determine which vertices can be added to a partially assembled graph at the given temperature. A vertex can be added when the total weight to its already built neighbors in the graph is at least τ. The assembly process is sequential meaning that only one vertex can be added at a time. Our first result is that is NP-complete even on planar graphs with maximum degree 3 when edges have only two different types of weights. This resolves the complexity of in the sense that the problem is poly-time solvable when either the maximum degree is at most 2 or the number of distinct edge weights is one, and is NP-complete otherwise. Our second result is a dichotomy theorem that completely characterizes the complexity of on graphs with maximum degree 3 and two distinct weights: w p and w n . We give a simple system of linear constraints on w p , w n , and τ that determines whether the problem is NP-complete or is poly-time solvable. In the process of establishing this dichotomy, we give a poly-time algorithm to solve a non-trivial class of Finally, we consider the optimization version of where the goal is to assemble a largest-possible induced subgraph of the given input graph. We show that even on graphs that can be assembled and have maximum degree 3, it is NP-hard to assemble a (1/n 1-ε)-fraction of the input graph for any here n denotes the number of vertices in G.  相似文献   

14.
Chvátal-Gomory cuts are among the most well-known classes of cutting planes for general integer linear programs (ILPs). In case the constraint multipliers are either 0 or , such cuts are known as -cuts. It has been proven by Caprara and Fischetti (Math. Program. 74:221–235, 1996) that separation of -cuts is -hard. In this paper, we study ways to separate -cuts effectively in practice. We propose a range of preprocessing rules to reduce the size of the separation problem. The core of the preprocessing builds a Gaussian elimination-like procedure. To separate the most violated -cut, we formulate the (reduced) problem as integer linear program. Some simple heuristic separation routines complete the algorithmic framework. Computational experiments on benchmark instances show that the combination of preprocessing with exact and/or heuristic separation is a very vital idea to generate strong generic cutting planes for integer linear programs and to reduce the overall computation times of state-of-the-art ILP-solvers.  相似文献   

15.
We investigate interpretations of formulas ψ in a first order fuzzy logic in models which are based on objects of a category SetR(Ω) which consists of Ω-sets, i.e. sets with similarity relations with values in a complete MV-algebra Ω and with morphisms defined as special fuzzy relations between Ω-sets. The interpretations are then morphisms in a category SetR(Ω) from some Ω-set to the object . We define homomorphisms between models in a category SetR(Ω) and we prove that if is a (special) homomorphism of models in a category SetR(Ω) then there is a relation between interpretations of a formula ψ in models . Supported by MSM6198898701, grant 201/07/0191 of GAČR and grant 1M0572.  相似文献   

16.
We study dynamic routing in store-and-forward packet networks where each network link has bounded buffer capacity for receiving incoming packets and is capable of transmitting a fixed number of packets per unit of time. At any moment in time, packets are injected at various network nodes with each packet specifying its destination node. The goal is to maximize the throughput, defined as the number of packets delivered to their destinations. In this paper, we make some progress on throughput maximization in various network topologies. Let n and m denote the number of nodes and links in the network, respectively. For line networks, we show that Nearest-to-Go (NTG), a natural distributed greedy algorithm, is -competitive, essentially matching a known lower bound on the performance of any greedy algorithm. We also show that if we allow the online routing algorithm to make centralized decisions, there is a randomized polylog(n)-competitive algorithm for line networks as well as for rooted tree networks, where each packet is destined for the root of the tree. For grid graphs, we show that NTG has a competitive ratio of while no greedy algorithm can achieve a ratio better than . Finally, for arbitrary network topologies, we show that NTG is -competitive, improving upon an earlier bound of O(mn). An extended abstract appeared in the Proceedings of the 8th Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2005, Berkeley, CA, USA, pp. 1–13, Lecture Notes in Computer Science, vol. 1741, Springer, Berlin. S. Angelov is supported in part by NSF Career Award CCR-0093117, NSF Award ITR 0205456 and NIGMS Award 1-P20-GM-6912-1. S. Khanna is supported in part by an NSF Career Award CCR-0093117, NSF Award CCF-0429836, and a US-Israel Binational Science Foundation Grant. K. Kunal is supported in part by an NSF Career Award CCR-0093117 and NSF Award CCF-0429836.  相似文献   

17.
In order to discuss digital topological properties of a digital image (X,k), many recent papers have used the digital fundamental group and several digital topological invariants such as the k-linking number, the k-topological number, and so forth. Owing to some difficulties of an establishment of the multiplicative property of the digital fundamental group, a k-homotopic thinning method can be essentially used in calculating the digital fundamental group of a digital product with k-adjacency. More precisely, let be a simple closed k i -curve with l i elements in . For some k-adjacency of the digital product which is a torus-like set, proceeding with the k-homotopic thinning of , we obtain its k-homotopic thinning set denoted by DT k . Writing an algorithm for calculating the digital fundamental group of , we investigate the k-fundamental group of by the use of various properties of a digital covering (Z×Z,p 1×p 2,DT k ), a strong k-deformation retract, and algebraic topological tools. Finally, we find the pseudo-multiplicative property (contrary to the multiplicative property) of the digital fundamental group. This property can be used in classifying digital images from the view points of both digital k-homotopy theory and mathematical morphology.
Sang-Eon HanEmail: Email:
  相似文献   

18.
19.
We obtain subquadratic algorithms for 3SUM on integers and rationals in several models. On a standard word RAM with w-bit words, we obtain a running time of . In the circuit RAM with one nonstandard AC 0 operation, we obtain . In external memory, we achieve O(n 2/(MB)), even under the standard assumption of data indivisibility. Cache-obliviously, we obtain a running time of . In all cases, our speedup is almost quadratic in the “parallelism” the model can afford, which may be the best possible. Our algorithms are Las Vegas randomized; time bounds hold in expectation, and in most cases, with high probability.  相似文献   

20.
Radio networks model wireless data communication when the bandwidth is limited to one wave frequency. The key restriction of such networks is mutual interference of packets arriving simultaneously at a node. The many-to-many (m2m) communication primitive involves p participant nodes from among n nodes in the network, where the distance between any pair of participants is at most d. The task is to have all the participants get to know all the input messages. We consider three cases of the m2m communication problem. In the ad-hoc case, each participant knows only its name and the values of n, p and d. In the partially centralized case, each participant knows the topology of the network and the values of p and d, but does not know the names of the other participants. In the centralized case, each participant knows the topology of the network and the names of all the participants. For the centralized m2m problem, we give deterministic protocols, for both undirected and directed networks, working in time, which is provably optimal. For the partially centralized m2m problem, we give a randomized protocol for undirected networks working in time with high probability (whp), and we show that any deterministic protocol requires time. For the ad-hoc m2m problem, we develop a randomized protocol for undirected networks that works in time whp. We show two lower bounds for the ad-hoc m2m problem. One lower bound states that any randomized protocol for the m2m ad hoc problem requires expected time. Another lower bound states that for any deterministic protocol for the m2m ad hoc problem, there is a network on which the protocol requires time when np(n)=Ω(n) and d>1, and that it requires Ω(n) time when np(n)=o(n). The results of this paper appeared in a preliminary form in “On many-to-many communication in packet radio networks” in Proceedings of the 10th Conference on Principles of Distributed Systems (OPODIS), Bordeaux, France, 2006, Lecture Notes in Computer Science 4305, Springer, Heidelberg, pp. 258–272. The work of B.S. Chlebus was supported by NSF Grant 0310503.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号