首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Imidazoline alpha 2-antagonist drugs such as efaroxan have been shown to increase the insulin secretory response to sulphonylureas from rat pancreatic B-cells. We have investigated whether this reflects binding to an islet imidazoline receptor or whether alpha 2-adrenoceptor antagonism is involved. 2. Administration of (+/-)-efaroxan or glibenclamide to Wistar rats was associated with a transient increase in plasma insulin. When both drugs were administered together, the resultant increase in insulin levels was much greater than that obtained with either drug alone. 3. Use of the resolved enantiomers of efaroxan revealed that the ability of the compound to enhance the insulin secretory response to glibenclamide resided only in the alpha 2-selective-(+)-enantiomer; the imidazoline receptor-selective-(-)-enantiomer was ineffective. 4. In vitro, (+)-efaroxan increased the insulin secretory response to glibenclamide in rat freshly isolated and cultured islets of Langerhans, whereas (-)-efaroxan was inactive. By contrast, (+)-efaroxan did not potentiate glucose-induced insulin secretion but (-)-efaroxan induced a marked increase in insulin secretion from islets incubated in the presence of 6 mM glucose. 5. Incubation of rat islets under conditions designed to minimize the extent of alpha 2-adrenoceptor signalling (by receptor blockade with phenoxybenzamine; receptor down-regulation or treatment with pertussis toxin) abolished the capacity of (+)- and (+/-)-efaroxan to enhance the insulin secretory response to glibenclamide. However, these manoeuvres did not alter the ability of (+/-)-efaroxan to potentiate glucose-induced insulin secretion. 6. The results indicate that the enantiomers of efaroxan exert differential effects on insulin secretion which may result from binding to effector sites having opposite stereoselectivity. Binding of (-)-efaroxan (presumably to imidazoline receptors) results in potentiation of glucose-induced insulin secretion, whereas interaction of (+)-efaroxan with a second site leads to selective enhancement of sulphonylurea-induced insulin release.  相似文献   

2.
Pimobendan is a new class of inotropic drug that augments Ca2+ sensitivity and inhibits phosphodiesterase (PDE) activity in cardiomyocytes. To examine the insulinotropic effect of pimobendan in pancreatic beta-cells, which have an intracellular signaling mechanism similar to that of cardiomyocytes, we measured insulin release from rat isolated islets of Langerhans. Pimobendan augmented glucose-induced insulin release in a dose-dependent manner, but did not increase cAMP content in pancreatic islets, indicating that the PDE inhibitory effects may not be important in beta-cells. This agent increased the intracellular Ca2+ concentration ([Ca2+]i) in the presence of 30 mM K+, 16.7 mM glucose, and 200 microM diazoxide, but failed to enhance the 30 mM K+-evoked [Ca2+]i rise in the presence of 3.3 mM glucose. Insulin release evoked by 30 mM K+ in 3.3 mM glucose was augmented. Then, the direct effects of pimobendan on the Ca2+-sensitive exocytotic apparatus were examined using electrically permeabilized islets in which [Ca2+]i can be manipulated. Pimobendan (50 microM) significantly augmented insulin release at 0.32 microM Ca2+, and a lower threshold for Ca2+-induced insulin release was apparent in pimobendan-treated islets. Moreover, 1 microM KN93 (Ca2+/calmodulin-dependent protein kinase II inhibitor) significantly suppressed this augmentation. Pimobendan, therefore, enhances insulin release by directly sensitizing the intracellular Ca2+-sensitive exocytotic mechanism distal to the [Ca2+]i rise. In addition, Ca2+/calmodulin-dependent protein kinase II activation may at least in part be involved in this Ca2+ sensitization for exocytosis of insulin secretory granules.  相似文献   

3.
1. The effects of a rat brain extract containing clonidine-displacing substance (CDS), a putative endogenous imidazoline receptor ligand, on insulin release from rat and human isolated islets of Langerhans were investigated. 2. CDS was able to potentiate the insulin secretory response of rat islets incubated at 6 mM glucose, in a dose-dependent manner. The magnitude of this effect was similar to that in response to the well-characterized imidazoline secretagogue, efaroxan. 3. CDS, like other imidazoline secretagogues, was also able to reverse the inhibitory action of diazoxide on glucose-induced insulin release, in both rat and human islets. 4. These effects of CDS on secretion were reversed by the imidazoline secretagogue antagonists, RX801080 and the newly defined KU14R, providing the first evidence that imidazoline-mediated actions of CDS can be blocked by specific imidazoline antagonists. 5. The effects of CDS on insulin secretion were unaffected when the method of preparation involved centri-filtration through a 3,000 Da cut-off membrane or when the extract was treated with protease. These results confirm that the active principle is of low molecular weight and is not a peptide. 6. Overall, the data suggest that CDS behaves as a potent endogenous insulin secretagogue acting at the islet imidazoline receptor.  相似文献   

4.
In the pancreatic beta-cell, glucose-induced membrane depolarization promotes opening of voltage-gated L-type Ca2+ channels, an increase in cytoplasmic free Ca2+ concentration ([Ca2+]i), and exocytosis of insulin. Inhibition of Na+,K+-ATPase activity by ouabain leads to beta-cell membrane depolarization and Ca2+ influx. Because glucose-induced beta-cell membrane depolarization cannot be attributed solely to closure of ATP-regulated K+ channels, we investigated whether glucose regulates other transport proteins, such as the Na+,K+-ATPase. Glucose inhibited Na+,K+-ATPase activity in single pancreatic islets and intact beta-cells. This effect was reversible and required glucose metabolism. The inhibitory action of glucose was blocked by pretreatment of the islets with a selective inhibitor of a Ca2+-independent phospholipase A2. Arachidonic acid, the hydrolytic product of this phospholipase A2, also inhibited Na+, K+-ATPase activity. This effect, like that of glucose, was blocked by nordihydroguaiaretic acid, a selective inhibitor of the lipooxygenase metabolic pathway, but not by inhibitors of the cyclooxygenase or cytochrome P450-monooxygenase pathways. The lipooxygenase product 12(S)-HETE (12-S-hydroxyeicosatetranoic acid) inhibited Na+,K+-ATPase activity, and this effect, as well as that of glucose, was blocked by bisindolylmaleimide, a specific protein kinase C inhibitor. Moreover, glucose increased the state of alpha-subunit phosphorylation by a protein kinase C-dependent process. These results demonstrate that glucose inhibits Na+, K+-ATPase activity in beta-cells by activating a distinct intracellular signaling network. Inhibition of Na+,K+-ATPase activity may thus be part of the mechanisms whereby glucose promotes membrane depolarization, an increase in [Ca2+]i, and thereby insulin secretion in the pancreatic beta-cell.  相似文献   

5.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is localized to pancreatic nerve terminals and stimulates insulin secretion. The insulinotropic effect of PACAP38 in insulin-producing HIT-T15 cells is accompanied by increases in cellular cAMP and cytoplasmic Ca2+ ([Ca2+]cyt). As also intracellular Na+ is important for insulin secretion after glucose and other cAMP forming peptides, we examined the Na+ dependence of the insulinotropic effect of PACAP38 in HIT-T15 cells. We found that PACAP38 (100 nM)-induced insulin secretion was diminished by approximately 50% by removal of extracellular Na+ (replaced by equimolar N-methyl-D-glucamine). In contrast, removal of Na+ did not diminish the formation of cellular cAMP (measured by radioimmunoassay) or the increase in [Ca2+]cyt (measured in FURA-2AM-loaded cell suspensions) induced by PACAP38. Furthermore, PACAP-38 increased the cytoplasmic Na+ ([Na+]cyt) in single HIT-T15 cells as measured by the fluorophore sodium-binding benzofran isophthalate. This increase was reduced by removal of extracellular Na+ and by inhibition of protein kinase A by H-89. We conclude that the insulinotropic action of PACAP38 is Na+-dependent. We propose that PACAP38 opens plasma membrane Na+ channels by an action partially mediated by cAMP and protein kinase A, and the subsequent raise in [Na+]cyt elicits insulin secretion by an as yet unsolved mechanism.  相似文献   

6.
Activation of protein kinases plays an important role in the Ca2+-dependent stimulation of insulin secretion by nutrients. The aim of the present study was to identify kinase substrates with the potential to regulate secretion because these have been poorly defined. Nutrient stimulation of the rat insulinoma RINm5F cell line and rat pancreatic islets resulted in an increase in the threonine phosphorylation of a 200-kDa protein. This was secondary to the gating of voltage-dependent Ca2+ channels because it was reproduced by depolarizing KCl concentrations and blocked by the Ca2+ channel antagonist, verapamil. The peak rises in [Ca2+]i preceded or were coincident with the maximal threonine phosphorylation in response to both glyceraldehyde and KCl. In digitonin-permeabilized RINm5F cells a rise in Ca2+ from 0.1 to 0.15 microM was sufficient to increase phosphorylation. Protein kinase C, protein kinase A, and Ca2+/calmodulin-dependent kinase II did not appear to be responsible for the phosphorylation, yet the Ca2+ dependence of the response suggests possible involvement of other members of the Ca2+/calmodulin-dependent kinase family. The 200-kDa protein was identified as myosin heavy chain by immunoprecipitation with a polyclonal nonmuscle myosin antibody. Phosphopeptide mapping indicated that the site of phosphorylation on myosin heavy chain was the same for both KCl- and glyceraldehyde-stimulated cells. Phosphoamino acid analysis confirmed a low basal phosphothreonine content of myosin heavy chain, which increased 6-fold in response to KCl. A lesser (2-fold) increase in serine phosphorylation was also detected using this technique. Although myosin IIA and IIB were shown to be present in RINm5F cells and rat islets, myosin IIA was the predominant threonine-phosphorylated species, suggesting that the two myosin species might be independently regulated. Our results identify myosin heavy chain as a novel kinase substrate in pancreatic beta-cells and suggest that it might play an important role in the regulation of insulin secretion.  相似文献   

7.
The present study was undertaken to test the hypothesis that exposure to high glucose concentrations enhances insulin secretion in pancreatic islets from glucokinase-deficient mice. Insulin secretion and intracellular calcium ([Ca2+]i) were measured as the glucose concentration was increased from 2 to 26 mmol/l in islets from heterozygous glucokinase (GK)-deficient mice (GK+/-) and their wild-type littermates (GK+/+). Results obtained in islets incubated in 11.6 or 30 mmol/l glucose for 48-96 h were compared. GK+/- islets that had been incubated in 30 mmol/l glucose showed improved although not normal insulin secretory and [Ca2+]i responses to the standard glucose challenge as well as an enhanced ability to sense small amplitude glucose oscillations. These effects were associated with increased glucokinase activity and protein. In contrast, exposure of GK+/+ islets to 30 mmol/l glucose increased their basal insulin secretion but reduced their incremental secretory responses to glucose and their ability to detect small amplitude glucose oscillations. Thus exposure of GK+/- islets to 30 mmol/l glucose for 48-96 h enhanced their ability to sense and respond to a glucose stimulus, whereas similar exposure of GK+/+ islets induced evidence of beta-cell dysfunction. These findings provide a mechanistic framework for understanding why glucokinase diabetes results in mild hyperglycemia that tends not to increase over time. In addition, the absence of one allele of the glucokinase gene appears to protect against glucose-induced beta-cell dysfunction (glucose toxicity).  相似文献   

8.
9.
The modality of the insulinotropic action of 1,1-dimethyl-2-[2-morpholinophenyl]guanidine fumarate (BTS 67 582), a new antidiabetic agent, was investigated in rat pancreatic islets. At a 0.1 mM concentration, which was sufficient to cause a close-to-maximal secretory response, BTS 67 582 failed to affect the utilization and oxidation of exogenous D-glucose, but slightly augmented 14CO2 production from islets prelabelled with either L-[U-14C]glutamine or [U-14C]palmitate. BTS 67 582 (0.1 mM) also failed to affect biosynthetic activity in islets incubated with L-[4-3H]phenylalanine. It augmented insulin release from islets incubated for 90 min in the absence or presence of D-glucose (2.8 to 16.7 mM), this coinciding with stimulation of 45Ca net uptake. In perifused islets deprived of extracellular D-glucose for 45 min, BTS 67 582 (0.1 mM) decreased 86Rb outflow from prelabelled islets, but failed to increase 45Ca efflux and insulin release. In the presence of D-glucose (7.0 mM), BTS 67 582, whilst failing to decrease 86Rb+ outflow, provoked rapid, sustained and rapidly reversible increases of both 45Ca2+ efflux and insulin output. The latter increases were attenuated, but not totally suppressed, in the absence of extracellular Ca2+. BTS 67 582 (0.1 mM) suppressed the inhibitory action of diazoxide (0.25 mM) upon glucose-stimulated insulin release, but nevertheless augmented insulin output from islets incubated in the presence of 90 mM K+. These findings support the view that the insulinotropic action of BTS 67 582 is mainly attributable to the inactivation of ATP-sensitive K+ channels. An intracellular redistribution of Ca2+ ions may also participate, however, to the islet functional response to BTS 67 582.  相似文献   

10.
The effects of two potent sigma receptor agonists (+)-3-PPP ((R)-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine) and DTG (N,N'-di-(o-tolyl)guanidine) on the insulin secretory responses in rat islets of Langerhans were investigated. Both sigma receptor ligands were able to potentiate the insulin secretory response of islets incubated at 6 mM glucose, in a dose-dependent manner and were also able to reverse the effects of diazoxide on insulin release. When islets were treated with efaroxan, a well-characterised imidazoline insulin secretagogue, and either (+)-3-PPP or DTG together, there was an unexpected and profound absence of stimulation of insulin release as compared to when islets were incubated with each compound alone. Experiments performed with islets where there was desensitization of DTG/sigma receptor or efaroxan/imidazoline binding site mediated responses suggest that at least two distinct receptor systems appear to be involved. The complex interactions of these two classes of drug require further investigation.  相似文献   

11.
The mechanisms by which glucose-dependent insulinotropic polypeptide (GIP) stimulates insulin secretion were investigated by measurements of whole-cell Ca2+ currents, the cytoplasmic Ca2+ concentration, and cell capacitance as an indicator of exocytosis in individual mouse pancreatic beta-cells maintained in short-term culture. GIP produced a 4.2-fold potentiation of depolarization-induced exocytosis. This stimulation of exocytosis was not associated with a change in the whole-cell Ca2+-current, and there was only a small increase (30%) in the cytoplasmic Ca2+ concentration [intercellular free Ca2+([Ca2+]i)]. The stimulatory effect of GIP on exocytosis was blocked by pretreatment with the specific protein kinase A (PKA) inhibitor Rp-8-Br-cAMPS. Glucagon-like peptide-I(7-36) amide (GLP-I) stimulated exocytosis (90%) in the presence of a maximal GIP concentration (100 nmol/l). Replacement of GLP-I with forskolin produced a similar stimulatory action on exocytosis. These effects of GLP-I and forskolin in the presence of GIP did not involve a change in the whole-cell Ca2+-current or [Ca2+]i. GIP was ineffective in the presence of both forskolin and the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX). Under the same experimental conditions, the protein kinase C (PKC)-activating phorbol ester 4-phorbol 12-myristate 13-acetate (PMA) stimulated exocytosis (60%). Collectively, our data indicate that the insulinotropic hormone GIP stimulates insulin secretion from pancreatic beta-cells, through the cAMP/PKA signaling pathway, by interacting with the secretory machinery at a level distal to an elevation in [Ca2+]i.  相似文献   

12.
Voltage-dependent Ca2+ channels play a central role in controlling neurotransmitter release at the synapse. They can be inhibited by certain G-protein-coupled receptors, acting by a pathway delimited to the membrane. In addition, modulation of Ca2+ channel activity by protein kinases also contributes to the dynamic regulation of neuronal physiology. Recently, differences in these modulations between Ca2+ channel subtypes have been shown in several neuronal preparations. Here we show that two types of presynaptic Ca2+ channel (N-type and Q-type) are differentially regulated by cAMP and G-proteins using a Xenopus oocyte expression system. Treatment to increase cytosolic cAMP concentration with forskolin and 3-isobutyl-1-methylxanthine (IBMX) markedly potentiated Q-type channel current, and the enhancement was reversed by protein kinase A inhibitors. Much smaller enhancement was observed in N-type channel current after the cAMP elevation. When large depolarizing prepulse was applied to the oocytes for evaluation of the tonic inhibition of Ca2+ channels by intrinsic G-protein activity, N-type channel current elicited a large prepulse facilitation but Q-type channels did not. The tonic inhibition of N-type channels was abolished by an intracellular perfusion with a 'cut-open' recording configuration, or by co-expression with G(alpha o). When kappa opioid receptors were co-expressed and stimulated with agonists, depolarization-resistant inhibition was more apparent in Q-type channels than in N-type channels. These results suggest that Q-type channels are more susceptible to the protein kinase A-mediated facilitation than N-type channels, and that activity of N-type channels can be more highly regulated in a voltage-dependent manner by G(betagamma) than that of Q-type channels. These differences may account for the selective regulation of neurotransmitter release by these Ca2+ channels.  相似文献   

13.
The energy requirements of most cells supplied with glucose are fulfilled by glycolytic and oxidative metabolism, yielding ATP. In pancreatic beta-cells, a rise in cytosolic ATP is also a critical signaling event, coupling closure of ATP-sensitive K+ channels (KATP) to insulin secretion via depolarization-driven increases in intracellular Ca2+ ([Ca2+]i). We report that glycolytic but not Krebs cycle metabolism of glucose is critically involved in this signaling process. While inhibitors of glycolysis suppressed glucose-stimulated insulin secretion, blockers of pyruvate transport or Krebs cycle enzymes were without effect. While pyruvate was metabolized in islets to the same extent as glucose, it produced no stimulation of insulin secretion and did not block KATP. A membrane-permeant analog, methyl pyruvate, however, produced a block of KATP, a sustained rise in [Ca2+]i, and an increase in insulin secretion 6-fold the magnitude of that induced by glucose. These results indicate that ATP derived from mitochondrial pyruvate metabolism does not substantially contribute to the regulation of KATP responses to a glucose challenge, supporting the notion of subcompartmentation of ATP within the beta-cell. Supranormal stimulation of the Krebs cycle by methyl pyruvate can, however, overwhelm intracellular partitioning of ATP and thereby drive insulin secretion.  相似文献   

14.
Glucose is the primary stimulus for insulin secretion by pancreatic beta-cells, and it triggers membrane depolarization and influx of extracellular Ca2+. Cholinergic agonists amplify insulin release by several pathways, including activation of phospholipase C, which hydrolyzes membrane polyphosphoinositides. A novel phospholipid, phosphatidylinositol 3,4,5- trisphosphate [PtdIns(3,4,5)P3], a product of phosphatidylinositol 3-kinase (PI 3-kinase), has recently been found in various cell types. We demonstrate by immunoblotting that PI 3-kinase is present in both cytosolic and membrane fractions of insulin-secreting beta-TC3 cells and in rat islets. The catalytic activity of PI 3-kinase in immunoprecipitates of islets and beta-TC3 cells was measured by the production of radioactive phosphatidylinositol 3-monophosphate from phosphatidylinositol (PtdIns) in the presence of [gamma-32P]ATP. Wortmannin, a fungal metabolite, dose dependently inhibited PI 3-kinase activity of both islets and beta-TC3 cells, with an IC50 of 1 nmol/l and a maximally effective concentration of 100 nmol/l, when it was added directly to the kinase assay. However, if intact islets were incubated with wortmannin and PI 3-kinase subsequently was determined in islet immunoprecipitates, approximately 50% inhibition of PI 3-kinase activity (but no inhibition of glucose- and carbachol-stimulated insulin secretion) from intact islets was obtained at wortmannin concentrations of 100 nmol/l. Wortmannin, at higher concentrations (1 and 10 micromol/l), inhibited glucose- and carbachol-induced insulin secretion of Intact rat islets by 58 and 92%, respectively. Wortmannin had no effect on the basal insulin release from rat islets. A similar dose curve of inhibition of glucose- and carbachol-induced insulin secretion by wortmannin was obtained when beta-TC3 cells were used. Cellular metabolism was, not changed by any wortmannin concentrations tested (0.01-10 micromol/l). Both basal cytosolic [Ca2+]i and carbamyl choline-induced increases of [Ca2]i were unaffected by wortmannin in the presence of 2.5 mmol/l Ca2+, while Ca2+ mobilization from intracellular stores was partially decreased by wortmannin. Together, these data suggest that wortmannin at concentrations that inhibit PI 3-kinase does not affect insulin secretion. PI 3-kinase is unlikely to have a major role in insulin secretion induced by glucose and carbachol.  相似文献   

15.
Increases in [Ca2+]i in pancreatic beta cells, resulting from Ca2+ mobilization from intracellular stores as well as Ca2+ influx from extracellular sources, are important in insulin secretion by glucose. Cyclic ADP-ribose (cADPR), accumulated in beta cells by glucose stimulation, has been postulated to serve as a second messenger for intracellular Ca2+ mobilization for insulin secretion, and CD38 is thought to be involved in the cADPR accumulation (Takasawa, S., Tohgo, A., Noguchi, N., Koguma, T., Nata, K., Sugimoto, T., Yonekura, H., and Okamoto, H. (1993) J. Biol. Chem. 268, 26052-26054). Here we created "knockout" (CD38(-/-)) mice by homologous recombination. CD38(-/-) mice developed normally but showed no increase in their glucose-induced production of cADPR in pancreatic islets. The glucose-induced [Ca2+]i rise and insulin secretion were both severely impaired in CD38(-/-) islets, whereas CD38(-/-) islets responded normally to the extracellular Ca2+ influx stimulants tolbutamide and KCl. CD38(-/-) mice showed impaired glucose tolerance, and the serum insulin level was lower than control, and these impaired phenotypes were rescued by beta cell-specific expression of CD38 cDNA. These results indicate that CD38 plays an essential role in intracellular Ca2+ mobilization by cADPR for insulin secretion.  相似文献   

16.
An increase in cytoplasmic Ca2+ in beta-cells is a key step in glucose-induced insulin secretion. However, whether changes in cytoplasmic free Ca2+ ([Ca2+]i) directly regulate secretion remains disputed. This question was addressed by investigating the temporal and quantitative relationships between [Ca2+]i and insulin secretion. Both events were measured simultaneously in single mouse islets loaded with fura-PE3 and perifused with a medium containing diazoxide (to prevent any effect of glucose on the membrane potential) and either 4.8 or 30 mmol/l K+. Continuous depolarization with 30 mmol/l K+ in the presence of 15 mmol/l glucose induced a sustained rise in [Ca2+]i and insulin release. No oscillations of secretion were detected even after mathematical analysis of the data (pulse, spectral and sample distribution analysis). In contrast, alternating between 30 and 4.8 mmol/l K+ (1 min/2 min or 2.5 min/5 min) triggered synchronous [Ca2+]i and insulin oscillations of regular amplitude in each islet. A good correlation was found between [Ca2+]i and insulin secretion, and it was independent of the presence or absence of oscillations. This quantitative correlation between [Ca2+]i and insulin secretion was confirmed by experiments in which extracellular Ca2+ was increased or decreased (0.1-2.5 mmol/l) stepwise in the presence of 30 mmol/l K+. This resulted in parallel stepwise increases or decreases in [Ca2+]i and insulin secretion. However, while the successive [Ca2+]i levels were unaffected by glucose, each plateau of secretion was much higher in 20 than in 3 mmol/l glucose. In conclusion, in our preparation of normal mouse islets, insulin secretion oscillates only when [Ca2+]i oscillates in beta-cells. This close temporal relationship between insulin secretion and [Ca2+]i changes attests of the regulatory role of Ca2+. There also exists a quantitative relationship that is markedly influenced by the concentration of glucose.  相似文献   

17.
Insulin secretion induced by cholecystokinin-8 (CCK-8) was recently suggested to involve phospholipase A2 (PLA2) activation. In this study, we examined whether CCK-8 stimulates the Ca2+-independent form of PLA2 in isolated rat islets, in comparison with stimulation by the PLA2-activating cholinergic agonist carbachol. We found that CCK-8 (100 nmol/l; 5.6 mmol/l glucose) induces lysophosphatidylcholine accumulation from [3H]palmitate-prelabeled islets (170 +/- 39%; P = 0.003) as well as arachidonic acid (AA) efflux from [3H]AA-prelabeled islets (190 +/- 13%; P < 0.001), and that p-amylcinnamoylantranilic acid (ACA) (50 micromol/l)-mediated PLA2 inhibition reduces CCK-8-induced AA efflux (52 +/- 11%; P = 0.001) and insulin secretion (67 +/- 16%; P < 0.001). Neither the Ca2+ channel antagonist verapamil (100 micromol/l) nor the Ca2+ATPase inhibitor thapsigargin (1 micromol/l) affected CCK-8-induced AA efflux and insulin secretion. Furthermore, despite removal of extracellular Ca2+, CCK-8 still increased AA efflux (48 +/- 14%; P = 0.006) and insulin secretion (105 +/- 46%; P = 0.025). In contrast, carbachol (100 micromol/l)-stimulated AA efflux was reduced by verapamil by 36 +/- 6% (P < 0.001) and abolished by removal of extracellular Ca2+. Overnight protein kinase C (PKC) downregulation by 12-O-tetradecanoyl phorbol-13-acetate (TPA) (500 nmol/l) reduced CCK-8-induced AA efflux (45 +/- 12%; P = 0.003) and insulin secretion (40 +/- 16%; P = 0.020). No additive action regarding either AA formation or insulin secretion was seen by combining TPA overnight and ACA, which implies the involvement of an additional PLA2- and PKC-independent signaling mechanism. The results show that CCK-8, in contrast to carbachol, activates Ca2+-independent PLA2 in islets and that the PLA2-activating capacity of CCK-8 is partly PKC dependent. Hence, Ca2+-independent PLA2 seems important for the insulinotropic effect of CCK-8, but not for that of carbachol.  相似文献   

18.
The following sequence of events is thought to underlie the stimulation of insulin release by hypoglycaemic sulphonylureas. Interaction of the drugs with a high-affinity binding site (sulphonylurea receptor) in the B-cell membrane leads to closure of ATP-sensitive K+ channels, depolarization, opening of voltage-dependent Ca2+ channels, Ca2+ influx and rise in cytoplasmic [Ca2+]i. Recent experiments using permeabilized islet cells or measuring changes in B-cell membrane capacitance have suggested that sulphonylureas can increase insulin release by a mechanism independent of a change in [Ca2+]i. This provocative hypothesis was tested here with intact mouse islets. When B-cells were strongly depolarized by 60 mM K+, [Ca2+]i was increased and insulin secretion stimulated. Under these conditions, tolbutamide did not further increase [Ca2+]i or insulin release, whether it was applied before or after high K+, and whether the concentration of glucose was 3 or 15 mM. This contrasts with the ability of forskolin and phorbol 12-myristate 13-acetate (PMA) to increase release in the presence of high K+. Tolbutamide also failed to increase insulin release from islets depolarized with barium (substituted for extracellular Ca2+) or with arginine in the presence of high glucose. Glibenclamide and its non-sulphonylurea moiety meglitinide were also without effect on insulin release from already depolarized B-cells. In the absence of extracellular Ca2+, acetylcholine induced monophasic peaks of [Ca2+]i and insulin secretion which were both unaffected by tolbutamide. Insulin release from permeabilized islet cells was stimulated by raising free Ca2+ (between 0.1 and 23 microM). This effect was not affected by tolbutamide and inconsistently increased by glibenclamide. In conclusion, the present study does not support the proposal that hypoglycaemic sulphonylureas can increase insulin release even when they do not also raise [Ca2+]i in B-cells.  相似文献   

19.
Both the Ca2+/phospholipid-dependent protein kinases (protein kinases C, PKCs) and mitogen-activated protein kinases (MAPKs) have been implicated as participants in the secretory response of bovine adrenomedullary chromaffin cells. To investigate a possible role for these kinases in exocytosis and the relationship of these kinases to one another, intact chromaffin cells were treated with agents that inhibited each of the kinases and analyzed for catecholamine release and MAPK/extracellular signal-regulated kinase (ERK) kinase (MEK)/MAPK activation after stimulation with secretagogues of differential efficacy. Of the three secretagogues tested, inactivation of PKCs by long-term phorbol 12-myristate 13-acetate (PMA) treatment or incubation with GF109203X had the greatest inhibitory effect on nicotine-induced catecholamine release and MEK/MAPK activation, a moderate effect on KCl-induced events, and little, if any, effect on Ca2+ ionophore-elicited exocytosis and MEK/MAPK activation. These results indicate that PKC plays a significant role in events induced by the optimal secretagogue nicotine and a lesser role in exocytosis elicited by the suboptimal secretagogues KCl and Ca2+ ionophore. Treatment of cells with the MEK-activation inhibitor PD098059 completely inhibited MEK/MAPK activation (IC50 1-5 microM) and partially inhibited catecholamine release induced by all secretagogues. However, PD098059 was more effective at inhibiting exocytosis induced by suboptimal secretagogues (IC50 approximately 10 microM) than that induced by nicotine (IC50 approximately 30 microM). These results suggest a more prominent role for MEK/MAPK in basic secretory events activated by suboptimal secretagogues than in those activated by the optimal secretagogue nicotine. However, PD098059 also partially blocked secretion potentiated by short-term PMA treatment, suggesting that PKC can function in part by signaling through MEK/MAPK to enhance secretion. Taken together, these results provide evidence for the preferential involvement of MEK/MAPK in basic secretory events activated by the suboptimal secretagogues KCl and Ca2+ ionophore and the participation of both PKC and MEK/MAPK in optimal, secretion induced by nicotine.  相似文献   

20.
OBJECTIVE: To investigate the disturbance in the function of SRIF receptor, Gi protein and Ca2+ channel in hGH adenoma cells and to evaluate their significance in the pathogenesis of pituitary hGH adenomas. METHODS: All 25 patients with pituitary hGH adenoma who were involved in this study had typical acromegalic manifestation and high fasting serum hGH levels of > 5.0 micrograms/L which were not suppressed to < 3.0 micrograms/L by oral glucose tolerance test. The pituitary hGH adenoma tissue obtained from transphenoidal operation was digested by collagenase and the dispersed adenoma cells were cultured in the monolayer. The effects of octreotide (SMS), a long-acting agonist of somatostatin, on hGH secretion and intracellular cAMP level were observed and the influences of pertussis toxin (PT), an inhibitor of Gi protein, and Ca2+ ionophore A23187 or KCl on the inhibitory action of octreotide on hGH secretion were also investigated in the cultured pituitary hGH adenoma cells. RESULTS: A total of 16.0% (4/25) of cultured pituitary hGH adenomas did not respond to octreotide (100 nmol). The inhibitory effect of octreotide on hGH secretion was not blocked by PT (50 ng/ml) and A23187 (10 mumol) or KCl (22.5 nmol) in 31.6% (6/19) and 35% (7/20) of hGH adenomas, respectively. The effects of octreotide on hGH secretion and intracellular cAMP levels were studied in 10 cultured hGH adenomas. Octreotide suppressed both hGH secretion and cAMP levels in 5 cases; inhibited only hGH secretion or the cAMP level in 3 cases and 1 case respectively; and affected neither hGH secretion nor cAMP level in the last case. CONCLUSION: There were abnormalities in the SRIF receptor and/or postreceptor signal transduction in 16.0% of hGH adenomas which did not respond to octreotide. The defects in Gi and/or Ca2+ channels were found in 52.4% (11/21) of hGH adenomas which had responded to octreotide. These defects might induce diminution of the inhibitory action of SRIF on hGH secretion and might be the causes of hypersecretion in some pituitary hGH adenomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号