首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The effect of nitrogen (N14)implant into dual-doped polysilicon gates was investigated. The electrical characteristics of sub-0.25-μm dual-gate transistors (both p- and n-channel), MOS capacitor quasi-static C-V curve, SIMS profile, poly-Si gate Rs , and oxide Qbd were compared at different nitrogen dose levels. A nitrogen dose of 5×1015 cm-2 is the optimum choice at an implant energy of 40 KeV in terms of the overall performance of both p- and n-MOSFETs and the oxide Qbd. The suppression of boron penetration is confirmed by the SIMS profiles to be attributed to the retardation effect in bulk polysilicon with the presence of nitrogen. High nitrogen dose (1×1016 cm-2) results in poly depletion and increase of sheet resistance in both unsilicided and silicided p+ poly, degrading the transistor performance. Under optimum design, nitrogen implantation into poly-Si gate is effective in suppressing boron penetration without degrading performance of either p- or n-channel transistors  相似文献   

2.
Hydrogenation of polysilicon (poly-Si) thin film transistors (TFT's) by ion implantation has been systematically studied. Poly-Si TFT performance was dramatically improved by hydrogen ion implantation followed by a forming gas anneal (FGA). The threshold voltage, channel mobility, subthreshold swing, leakage current, and ON/OFF current ratio have been studied as functions of ion implantation dose and FGA temperature. Under the optimized conditions (H+ dose of 5×1015 cm-2 and FGA temperature at 375°C), NMOS poly-Si TFT's fabricated by a low temperature 600°C process have a mobility of ~27 cm 2/V·s, a threshold voltage of ~2 V, a subthreshold swing of ~0.9 V/decade, and an OFF-state leakage current of ~7 pA/μm at VDS=10 V. The avalanche induced kink effect was found to be reduced after hydrogenation  相似文献   

3.
A new post-metallization annealing technique was developed to improve the quality of metal-oxide-semiconductor (MOS) devices using SiO 2 films formed by a parallel-plate remote plasma chemical vapor deposition as gate insulators. The quality of the interface between SiO2 and crystalline Si was investigated by capacitance-voltage (C-V) measurements. An H2O vapor annealing at 270°C for 30 min efficiently decreased the interface trap density to 2.0×1010 cm-2 eV-1, and the effective oxide charge density from 1×10 12 to 5×109 cm-2. This annealing process was also applied to the fabrication of Al-gate polycrystalline silicon thin film transistors (poly-Si TFT's) at 270°C. In p-channel poly-Si TFT's, the carrier mobility increased from 60-400 cm2 V-1 s-1 and the threshold voltage decreased from -5.5 to -1.7 V  相似文献   

4.
Shallow p+-n and n+-p junctions were formed in germanium preamorphized Si substrates. Germanium implantation was carried out over the energy range of 50-125 keV and at doses from 3×1014 to 1×1015 cm-2. p +-n junctions were formed by 10-keV boron implantation at a dose of 1×1015 cm-2. Arsenic was implanted at 50 keV at a dose of 5×1015 cm-2 to form the n+-p junctions. Rapid thermal annealing was used for dopant activation and damage removal. Ge, B, and As distribution profiles were measured by secondary ion mass spectroscopy. Rutherford backscattering spectrometry was used to study the dependence of the amorphous layer formation on the energy and dose of germanium ion implantation. Cross-sectional transmission electron microscopy was used to study the residual defects formed due to preamorphization. Complete elimination of the residual end-of-range damage was achieved in samples preamorphized by 50-keV/1×1015 cm-2 germanium implantation. Areal and peripheral leakage current densities of the junctions were studied as a function of germanium implantation parameters. The results show that high-quality p+-n and n+-p junctions can be formed in germanium preamorphized substrates if the preamorphization conditions are optimized  相似文献   

5.
The characteristics of CMOS devices fabricated in oxygen-implanted silicon-on-insulator (SOI) substrates with different oxygen doses are studied. The results show that transistor junction leakage currents are improved by orders of magnitude when the oxygen dose is decreased from 2.25×1018 cm-2 to 1.4×1018 cm-2 . The floating-body effect, i.e. transistor turn-on at lower gate voltage with dramatic improvement in subthreshold slope when the drain voltage is increased, is enhanced by the reduction in leakage current and hence the oxygen dose. In SOI substrates implanted with 1.4×1017 cm-2 oxygen dose and annealed at 1150°C, back-channel mobilities are decreased by several orders of magnitude compared to the mobilities in the precipitate-free silicon film. These device characteristics are correlated with the microstructure at the silicon-buried-oxide interface, which is controlled by oxygen implantation and post-oxygen-implantation anneal  相似文献   

6.
The reduction of trap-state densities by plasma hydrogenation in n-channel polysilicon thin-film transistors (poly-TFTs) fabricated using a maximum temperature of 600°C has been studied. Hydrogenated devices have a mobility of ~40 cm2/V×5, a threshold voltage of ~2 V, an inverse subthreshold of ~ 0.55 V/decade, and a maximum on/off current ratio of 5×108. The effective channel length decreases by ~0.85 μm after a short hydrogenation which may be attributed to the activation of donors at trap states near the source/drain junctions. Trap-state densities decrease from 1.6×1012 to 3.5×1011 cm-2 after hydrogenation, concomitant with the reduction of threshold voltage. Using the gate lengths at which the trap-state densities deviate from the long-channel values as markets for the leading edge of passivation, the apparent hydrogen diffusivity is found to be 1.2×10-11 cm2/s at 350°C in the TFT structure  相似文献   

7.
This work investigates the shallow CoSi2 contacted junctions formed by BF2+ and As+ implantation, respectively, into/through cobalt silicide followed by low temperature furnace annealing. For p+n junctions fabricated by 20 keV BF2+ implantation to a dose of 5×1015 cm-2, diodes with a leakage current density less than 2 nA/cm2 at 5 V reverse bias can be achieved by a 700°C/60 min annealing. This diode has a junction depth less than 0.08 μm measured from the original silicon surface. For n+p junctions fabricated by 40 keV As+ implantation to a dose of 5×1015 cm-2, diodes with a leakage current density less than 5 nA/cm2 at 5 V reverse bias can be achieved by a 700°C/90 min annealing; the junction depth is about 0.1 μm measured from the original silicon surface. Since the As+ implanted silicide film exhibited degraded characteristics, an additional fluorine implantation was conducted to improve the stability of the thin silicide film. The fluorine implantation can improve the silicide/silicon interface morphology, but it also introduces extra defects. Thus, one should determine a tradeoff between junction characteristics, silicide film resistivity, and annealing temperature  相似文献   

8.
A novel process which uses N2+ implantation into polysilicon gates to suppress the agglomeration of CoSi2 in polycide gated MOS devices is presented. The thermal stability of CoSi2/polysilicon stacked layers can be dramatically improved by using N2+ implantation into polysilicon. The sheet resistance of the samples without N2+ implantation starts to increase after 875°C RTA for 30 s, while the sheet resistance of CoSi2 film is not increased at all after 950 and 1000°C RTA for 30 s if the dose of nitrogen is increased up to 2×1015 cm-2 and 6×1015 cm2, respectively, and TEM photographs show that the agglomeration of CoSi2 film is completely suppressed. It is found that the transformation to CoSi2 from CoSi is impeded by N2+ implantation such that the grain size of CoSi2 with N2+ implantation is much smaller than that without N2+ implantation. As a result, the thermal stability of CoSi2 is significantly improved by N2+ implantation into polysilicon  相似文献   

9.
Describes the use of a p-type refractory ohmic contact in ohmic self-aligned devices. The contacts are based on self-aligned diffusion of zinc-doped tungsten film. The diffusion is nearly isotropic in the vicinity of silicon nitride sidewalls, allowing self-alignment of ohmic contacts with emitters and gates. Low-resistance contacts (<10-6 Ω·cm2) are formed both to GaAs and GaAlAs, and the lifetime of the diffused region is superior to that obtained from implantation. Heterostructure bipolar transistors (HBTs) showing high current gains (⩾50 at 2×103 A·cm-2 and ⩾200 at 1×105 A·cm-2 with micrometer-sized emitter widths) and p-channel GaAs gate heterostructure field-effect transistors (HFETs) showing high transconductances (78 mS/mm at 2.2-μm gate length) have been fabricated using this contact  相似文献   

10.
Key technologies for fabricating polycrystalline silicon thin film transistors (poly-Si TFTs) at a low temperature are discussed. Hydrogenated amorphous silicon films were crystallized by irradiation of a 30 ns-pulsed XeCl excimer laser. Crystalline grains were smaller than 100 nm. The density of localized trap states in poly-Si films was reduced to 4×1016 cm-3 by plasma hydrogenation only for 30 seconds. Remote plasma chemical vapor deposition (CVD) using mesh electrodes realized a good interface of SiO 2/Si with the interface trap density of 2.0×1010 cm-2 eV-1 at 270°C. Poly-Si TFTs were fabricated at 270°C using laser crystallization, plasma hydrogenation and remote plasma CVD. The carrier mobility was 640 cm2/Vs for n-channel TFTs and 400 cm2/Vs for p-channel TFTs. The threshold voltage was 0.8 V for n-channel TFTs and -1.5 V for p-channel TFTs. The leakage current of n-channel poly-Si TFTs was reduced from 2×10-10 A/μm to 3×10-13 A/μm at the gate voltage of -5 V using an offset gate electrode with an offset length of 1 μm  相似文献   

11.
This work examines the effect of iron as a contaminate implant impurity on the characteristics of boron p+n silicon diodes. Plasma-based doping processes [e.g., plasma source ion implantation (PSII)] are subject to concerns about the introduction of contaminant impurities. Here, a relevant database on iron contaminant effects was acquired through a controlled study using conventional ion-beam implantation. Uncontaminated control diodes had leakage current densities of 6-9 nA-cm-2 at -5 volts and ideality factors <1.05. Iron contaminated diodes had increasing leakage current densities of 8-60 nA-cm-2 with increasing iron implant doses of 4×107 to 4×1014 cm-2 and ideality factors <1.07 over six decades of current, regardless of dose  相似文献   

12.
A process for the fabrication of p-channel polysilicon MOS transistors is described. The process is compatible with the use of low-temperature glass substrates and replaces the use of ion implantation for the source/drain doping with in situ doped polysilicon. MOS transistors made with this process exhibit an on/off current ratio of 2.5×105, a mobility of 16 cm2/V-s, and a subthreshold slope of 1.3 V/decade  相似文献   

13.
We describe the first attempts to control photocurrent, and thus power dissipation, in surface-normal multiple-quantum-well (MQW) modulators. We have made detailed experimental studies of proton-implanted p-i-n GaAs-AlxGa1-xAs MQW modulators having barrier layers of x=0.3, 0.45, and 1.0. Structures were implanted to levels of 1×1012 cm-2, 1×1013 cm-2, and 1×1014 cm -2. Photocurrent progressively decreased with increasing implant-dose and barrier mole fraction (x). Exciton linewidths showed a strong voltage and implant dose dependence, demonstrating a tradeoff between photocurrent and modulation performance. We obtained our best results with x=1.0 barriers. For example, 1×1013 cm-2-implanted asymmetric Fabry-Perot modulators were realized in which the optical performance was similar to that of unimplanted devices. The photocurrent responsivity was, however, only 0.007 A/W at 12.5 V bias. We report measurements of carrier lifetime in these materials that show the reduction in photocurrent arises from a reduction in lifetime due to implant-induced damage. In addition, the reduced lifetime decreases the optically-excited quantum-well carrier population, leading to an increase in cw saturation intensity. Specifically, 1×1013 cm-2-implanted devices with x=1.0 have a saturation intensity of roughly 45 kW/cm2, while unimplanted devices have 3.5 kW/cm2. Asymmetric self electro-optic effect devices (A-SEED's) are demonstrated, and power dissipation issues associated with the use of low-photocurrent modulators in integrated systems are discussed  相似文献   

14.
GaN MOS capacitors were fabricated using silicon dioxide deposited by low-pressure chemical vapor deposition oxide at 900°C. The MOS capacitor flatband voltage shift versus temperature was used to determine a pyroelectric charge coefficient of 3.7 × 109 q/cm2-K, corresponding to a pyroelectric voltage coefficient of 7.0 × 104 V/m-K  相似文献   

15.
Shubnikov-de Haas (SdH) oscillation and Hall measurement results were compared with HEMT DC and RF characteristics for two different MOCVD grown AlGaN-GaN HEMT structures on semiinsulating 4H-SiC substrates. A HEMT with a 40-nm, highly doped AlGaN cap layer exhibited an electron mobility of 1500 cm2/V/s and a sheet concentration of 9×1012 cm at 300 K (7900 cm2/V/s and 8×1012 cm-2 at 80 K), but showed a high threshold voltage and high DC output conductance. A 27-nm AlGaN cap with a thinner, lightly doped donor layer yielded similar Hall values, but lower threshold voltage and output conductance and demonstrated a high CW power density of 6.9 W/mm at 10 GHz. The 2DEG of this improved structure had a sheet concentration of nSdH=7.8×1012 cm-2 and a high quantum scattering lifetime of τq=1.5×10-13 s at 4.2 K compared to nSdH=8.24×1012 cm-2 and τq=1.72×10-13 s for the thick AlGaN cap layer structure, Despite the excellent characteristics of the films, the SdH oscillations still indicate a slight parallel conduction and a weak localization of electrons. These results indicate that good channel quality and high sheet carrier density are not the only HEMT attributes required for good transistor performance  相似文献   

16.
Based on substrate-charge considerations, an increased drain saturation current for MOS transistors in ultrathin silicon-on-insulator (SOI) films is predicted, compared to similar transistors in bulk or thick SOI films. For typical parameters of 200-A gate oxide with a channel doping of 4×1016 cm-3, the drain saturation current in ultrathin SOI transistors is predicted to be ~40% larger than that of bulk structures. An increase of ~30% is seen in measurements made on devices in 1000-A SOI films  相似文献   

17.
The authors have fabricated n-p-n GaAs/AlGaAs heterojunction bipolar transistors (HBTs) with base doping graded exponentially from 5×1019 cm-3 at the emitter edge to 5×1018 cm-3 at the collector edge. The built-in field due to the exponentially graded doping profile significantly reduces base transit time, despite bandgap narrowing associated with high base doping. Compared to devices with the same base thickness and uniform base doping of 1×1019 cm-3 , the cutoff frequency is increased from 22 to 31 GHz and maximum frequency of oscillation is increased from 40 to 58 GHz. Exponentially graded base doping also results ill consistently higher common-emitter current gain than uniform base doping, even though the Gummel number is twice as high and the base resistance is reduced by 40%  相似文献   

18.
Current-voltage characteristics of Au contacts formed on buried implanted oxide silicon-on-insulator (SOI) structures are discussed, which indicate that the dominant transport mechanism is space-charge-limited current (SCLC) conduction in the presence of deep-level states. The deep-level parameters, determined using a simple analysis, appear to be sensitive to anneal conditions used and subsequent processing. Silicon implanted with 1.7×1018 cm-2 oxygen ions at 150 keV following a 1200°C anneal for 3 h shows deep level 0.37 eV below the conduction band edge with a concentration of unoccupied traps of ~ 2×1015 cm-3 . In contrast, arsenic ion implantation, in the 1200°C annealed material with a dose of 1.5×1012 cm-2 at 60 keV and activated by rapid thermal annealing (RTA), introduces a deep level 0.25 eV below the conduction band edge with an unoccupied trap concentration of ~6×1017 cm-2  相似文献   

19.
The Hall mobilities and Hall concentrations of channel electrons in boron-implanted NMOSFETs were measured at 77 and 300 K. At both temperatures, the mobilities were found to decrease with increasing implantation dose (1011-1012 cm-2) only for electron concentrations <2×1012 cm-2, the effect being more pronounced at 77 K. It is suggested that the mobility degradation is mainly due to impurity scattering  相似文献   

20.
We demonstrate that fluorine incorporation in the polysilicon emitter of n-p-n double-diffused bipolar transistors during BF2 implantation at a dose of 1×1015 cm-2 significantly alters the device electrical characteristics. In particular, tunneling emitter/base currents are observed at both forward and reverse voltages, due to excessive base dopant concentration at the junction. Fluorine-enhanced interfacial oxide break-up and epitaxial realignment of the poly-Si emitter are shown to be responsible for these results  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号