首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ZnO thin films were initially deposited on a heavily phosphorus-doped Si (n+-Si) substrate by radio frequency magnetron sputtering. The transition from n-type ZnO to p-type one was realized by phosphorus diffusing from Si substrate to ZnO film and being thermally activated during post annealing. Crystal structures of the ZnO films were confirmed to be highly c-axis oriented wurtzite structure by X-ray diffraction experiment. Photoluminescence spectra of the ZnO films showed strong ultraviolet emissions originated from the recombination of the band-edge excitons. The composition of the films was measured by X-ray photoelectron spectroscopy, and a typical concentration of phosphorus was about 0.48% corresponding to the order of atomic density of 1019/cm3. The hole concentration of the film was + 1.28 × 1019/cm3 measured by Hall effect apparatus. Formation of the p-type ZnO films can be further confirmed by the rectifying I-V curves of p-ZnO/n+-Si heterojunctions.  相似文献   

2.
Transparent diode heterojunction on ITO coated glass substrates was fabricated using p-type AgCoO2 and n-type ZnO films by pulsed laser deposition (PLD). The PLD of AgCoO2 thin films was carried out using the pelletized sintered target of AgCoO2 powder, which was synthesized in-house by the hydrothermal process. The band gap of these thin films was found to be ∼ 3.89 eV and they had transmission of ∼ 55% in the visible spectral region. Although Hall measurements could only indicate mixed carrier type conduction but thermoelectric power measurements of Seebeck coefficient confirmed the p-type conductivity of the grown AgCoO2 films. The PLD grown ZnO films showed a band gap of ∼ 3.28 eV, an average optical transmission of ∼ 85% and n-type carrier density of ∼ 4.6 × 1019 cm 3. The junction between p-AgCoO2 and n-ZnO was found to be rectifying. The ratio of forward current to the reverse current was about 7 at 1.5 V. The diode ideality factor was much greater than 2.  相似文献   

3.
S. Nagar 《Thin solid films》2010,518(16):4542-4452
Successful p-type ZnO thin films have been reported by depositing it on semi insulating GaAs substrates by Pulsed Laser Deposition (PLD) technique. The PLD samples were subsequently subjected to Rapid Thermal Annealing to achieve the required doped ZnO. X-ray Diffraction, Atomic Force Microscopy and Van der Pauw Hall measurements were performed on the annealed samples and compared with as-deposited ones. The XRD results confirm growth of <002> ZnO along with better crystallinity for the annealed sample. The AFM results reveal that the thin films deposited were highly uniform having very low roughness values. Van der Pauw Hall measurements show a transition from n-type conductivity for as-deposited sample to p-type for annealed samples. The hole concentration and Hall mobility measured were reported to be as high as 4.475 × 1020 cm− 3 and 39.73 cm2/V-sec respectively. These are probably the highest reported values to date and are encouraging from the point of successful fabrication of efficient ZnO-based optoelectronics devices like LED, laser, photodiodes, etc. in the near future.  相似文献   

4.
I.V. Rogozin 《Thin solid films》2009,517(15):4318-4321
We investigate the p-type doping in ZnO prepared by the method of radical beam gettering epitaxy using NO gas as the oxygen source and nitrogen dopant. Secondary ion mass spectroscopy measurements demonstrate that N is incorporated into ZnO film in concentration of about 8 × 1018 cm− 3. The hole concentration of the N-doped p-type ZnO films was between 1.4 × 1017 and 7.2 × 1017 cm− 3, and the hole mobility was 0.9-1.2 cm2/Vs as demonstrated by Hall effect measurements. The emission peak of 3.312 eV is observed in the photoluminescence spectra at 4.2  of N-doped p-type ZnO films, probably neutral acceptor bound. The activation energy of the nitrogen acceptor was obtained by temperature-dependent Hall-effect measurement and equals about 145 meV. The p-n heterojunctions ZnO/ZnSe were grown on n-type ZnSe substrate and have a turn-on voltage of about 3.5 V.  相似文献   

5.
Xiaofeng Xu  Wei Hu  Jushui Lai  Zhifeng Ying  Jiada Wu 《Vacuum》2010,84(11):1306-1309
Pulsed laser deposition has been utilized to synthesize impurity-doped ZnO thin films on silicon substrate. Large-sized-mismatched group-V elements (AV) including P, As, Sb and Bi were used as dopants. Hall effect measurements show that hole concentration in the order of 1016-1018 cm−3, resistivity in the range of 10-100 Ω cm, Hall mobility in the range of 10-100 cm2/Vs were obtained only for ZnO:As and ZnO:Bi thin films. X-ray diffraction measurements reveal that the films possess polycrystallinity or nanocrystallinity with ZnO (002) preferred orientation. Guided by X-ray photoemission spectroscopy analyses and theoretical calculations for large-sized-mismatched group-V dopant in ZnO, the AZnV-2VZn complexes are believed to be the most possible acceptors in the p-type AV-doped ZnO thin films.  相似文献   

6.
Phosphorus-doped p-type ZnO thin films have been deposited by metalorganic chemical vapor deposition using P2O5 as the dopant source. The conductivity types of the as-grown thin films were strongly temperature-dependent. When the substrate temperature maintains at the optimal one of 420 °C, the evaporating temperature of the phosphorus source plays significant roles in controlling the phosphorus content doping into films, then influences the films' performance. Optimizing the growth parameters, the optimal results were obtained with a resistivity of 6.49 Ω cm, a Hall mobility of 0.40 cm2/V s and a hole concentration of 2.42 × 1018 cm− 3. The optical property of the optimal film was characterized by PL measurements, which indicated the film is of high optical quality.  相似文献   

7.
A custom-designed inductively coupled plasma assisted radio-frequency magnetron sputtering deposition system has been used to fabricate N-doped p-type ZnO (ZnO:N) thin films on glass substrates from a sintered ZnO target in a reactive Ar + N2 gas mixture. X-ray diffraction and scanning electron microscopy analyses show that the ZnO:N films feature a hexagonal crystal structure with a preferential (002) crystallographic orientation and grow as vertical columnar structures. Hall effect and X-ray photoelectron spectroscopy analyses show that N-doped ZnO thin films are p-type with a hole concentration of 3.32 × 1018 cm− 3 and mobility of 1.31 cm2 V− 1 s− 1. The current-voltage measurement of the two-layer structured ZnO p-n homojunction clearly reveals the rectifying ability of the p-n junction. The achievement of p-type ZnO:N thin films is attributed to the high dissociation ability of the high-density inductively coupled plasma source and effective plasma-surface interactions during the growth process.  相似文献   

8.
We report on the growth of p-type ZnO thin films with improved stability on various substrates and study the photoconductive property of the p-type ZnO films. The nitrogen doped ZnO (N:ZnO) thin films were grown on Si, quartz and alumina substrates by radio frequency magnetron sputtering followed by thermal annealing. Structural studies show that the N:ZnO films possess high crystallinity with c-axis orientation. The as-grown films possess higher lattice constants compared to the undoped films. Besides the high crystallinity, the Raman spectra show clear evidence of nitrogen incorporation in the doped ZnO lattice. A strong UV photoluminescence emission at ~ 380 nm is observed from all the N:ZnO thin films. Prior to post-deposition annealing, p-type conductivity was found to be unstable at room temperature. Post-growth annealing of N:ZnO film on Si substrate shows a relatively stable p-type ZnO with room temperature resistivity of 0.2 Ω cm, Hall mobility of 58 cm2/V s and hole concentration of 1.95 × 1017 cm− 3. A homo-junction p-n diode fabricated on the annealed p-type ZnO layer showed rectification behavior in the current-voltage characteristics demonstrating the p-type conduction of the doped layer. Doped ZnO films (annealed) show more than two orders of magnitude enhancement in the photoconductivity as compared to that of the undoped film. The transient photoconductivity measurement with UV light illumination on the doped ZnO film shows a slow photoresponse with bi-exponential growth and bi-exponential decay behaviors. Mechanism of improved photoconductivity and slow photoresponse is discussed based on high mobility of carriers and photodesorption of oxygen molecules in the N:ZnO film, respectively.  相似文献   

9.
N-doped, p-type ZnO thin films have been grown by plasma-assisted metal-organic chemical vapor deposition method. The results under optimized growth conditions included a resistivity of 1.72 Ω cm, a Hall mobility of 1.59 cm2/V s, and a hole concentration of 2.29 × 1018 cm− 3, and were consistently reproducible. A N-related free-to-neutral-acceptor emission and an associated phonon replica were evident in room temperature photoluminescence spectra, from which the N acceptor energy level in ZnO was estimated to be 180 meV above the valence band maximum.  相似文献   

10.
The heterojunction light-emitting diode with n-ZnO/p-GaN structure was grown on (0 0 0 1) sapphire substrate by metalorganic chemical vapor deposition (MOCVD) technique. The heterojunction structure was consisted of an Mg-doped p-type GaN layer with a hole concentration of ∼1017 cm−3 and a unintentionally doped n-type ZnO layer with an electron concentration of ∼1018 cm−3. A distinct blue-violet electroluminescence with a dominant emission peak centered at ∼415 nm was observed at room temperature from the heterojunction structure under forward bias conditions. The origins of the electroluminescence (EL) emissions are discussed in comparison with the photoluminescence spectra, and it was supposed to be attributed to a radiative recombination in both n-ZnO and p-GaN sides.  相似文献   

11.
Sodium and nitrogen dual acceptor doped p-type ZnO (ZnO:(Na, N)) films have been prepared by spray pyrolysis technique at a substrate temperature of 623 K. The ZnO:(Na, N) films are grown at a fixed N doping concentration of 2 at.% and varying the nominal Na doping concentration from 0 to 8 at.%. The XRD results show that all the ZnO:(Na, N) films exhibited (0 0 2) preferential orientation. The EDX and elemental mapping analysis shows the presence and distribution of Zn, O, Na and N in the deposited films. The Hall measurement results demonstrate that the Na–N dual acceptor doped ZnO films show excellent p-type conduction. The p-type ZnO:(Na, N) films with comparatively low resistivity of 5.60 × 10−2 Ω cm and relatively high carrier concentration of 3.15 × 1018 cm−3 are obtained at 6 at.%. ZnO based homojunction is fabricated by depositing n-type layer (Eu doped ZnO) grown over the p-type layer ZnO:(Na, N). The current–voltage (I–V) characteristics measured from the two-layer structure show typical rectifying characteristics of p-n junction with a low turn on voltage of about 1.69 V. The ZnO:(Na, N) films exhibit a high transmittance (about >90%) and the average reflectance is 8.9% in the visible region. PL measurement shows near-band-edge (NBE) emission and deep-level (DL) emission in the ZnO:(Na, N) thin films.  相似文献   

12.
An inorganic/organic vertical heterojunction diode has been demonstrated with p-type Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) deposited by spin coating on n-type Ga-doped ZnO (GZO) thin films. Transparent conducting GZO thin films are deposited on glass substrate by rf-magnetron sputtering. Electrical properties of GZO thin films are investigated depending on the processing temperatures. The resistivity, mobility and carrier concentration of the GZO thin films deposited at processing temperatures of 500 °C are measured to be about 3.6 × 10−4 Ω cm, 23.8 cm2/Vs and 7.1 × 1020 cm3, respectively. The root mean square surface roughness of the GZO thin films is calculated to be ~ 0.9 nm using atomic force microscopy. Current-voltage characteristics of the n-GZO/p-PEDOT:PSS heterojunction diode present rectifying operation. Half wave rectification is observed with the maximum output voltage of 1.85 V at 1 kHz. Low turn-on voltage of about 1.3 V is obtained and the ideality factor of the n-GZO/p-PEDOT:PSS diode is derived to be about 1.8.  相似文献   

13.
Micro-sized ZnO rods on a SnO2 coated glass substrate were obtained by the spray pyrolysis method. Then a p-type CuSCN layer was deposited on this micro-sized n-ZnO to produce a p-n heterojunction. Temperature dependent current-voltage characteristics were measured in the temperature range 150-300 K with a step of 25 K. The current-voltage characteristics exhibit electrical rectification behavior. The zero bias barrier height Φb0 increases and the ideality factor n decreases with an increase in temperature. The apparent Richardson constant and mean barrier height were found to be 0.0028 A cm− 2 K− 2 and 0.228 eV respectively in the range 150-300 K. After a barrier height inhomogeneity correction, the Richardson constant and the mean barrier height were obtained as 65.20 A cm− 2 K− 2 and 0.840 eV, respectively.  相似文献   

14.
Highly conducting and transparent thin films of tungsten-doped ZnO (ZnO:W) were prepared on glass substrates by direct current (DC) magnetron sputtering at low temperature. The effect of film thickness on the structural, electrical and optical properties of ZnO:W films was investigated. All the deposited films are polycrystalline with a hexagonal structure and have a preferred orientation along the c-axis perpendicular to the substrate. The electrical resistivity first decreases with film thickness, and then increases with further increase in film thickness. The lowest resistivity achieved was 6.97 × 10−4 Ω cm for a thickness of 332 nm with a Hall mobility of 6.7 cm2 V−1 s−1 and a carrier concentration of 1.35 × 1021 cm−3. However, the average transmittance of the films does not change much with an increase in film thickness, and all the deposited films show a high transmittance of approximately 90% in the visible range.  相似文献   

15.
Y.M. Hu  C.Y. Wang  T.C. Han 《Thin solid films》2010,519(4):1272-1276
This paper investigates the anomalous and specific Raman modes present in Mn-doped ZnO thin films deposited using the magnetron co-sputtering method. To trace these peaks, we prepared Mn-doped ZnO films with different Mn concentrations by altering the sputtering power of the Mn target in a pure Ar or Ar + N2 sputtering atmosphere. A broad band observed in the Raman spectra of heavily Mn-doped ZnO films ranges from 500 to 590 cm− 1. This band involves the enhanced A1 longitudinal mode and activated silent modes of ZnO, as well as a characteristic mode of Mn2O3. Four anomalous Raman peaks at approximately 276, 510, 645 and 585 cm− 1 are present in pure and Mn-doped ZnO films deposited under the Ar + N2 sputtering atmosphere. The peaks at 276 cm− 1 and 510 cm− 1 may originate from the complex defects of Zni-NO and Zni-Oi, respectively, while the peak at approximately 645 cm− 1 could be due to a complex defect of Zni coupled with both the N and Mn dopants. The results of this study suggest classifying the origins of anomalous and specific Raman peaks in Mn-doped ZnO films into three major types: structural disorder and morphological changes caused by the Mn dopant, Mn-related oxides and intrinsic host-lattice defects coupled with/without the N dopant.  相似文献   

16.
Urchin-like p-type ZnO nanorods were grown along preferred (100) direction by low temperature solution technique and subjected to morphological, structural, Hall conductivity, dielectric and ferroelectric characterization. Hall voltage, bulk carrier density (hole) and mobility were found to be 0.058 V, 2.36 × 1019 cm3 and 0.025 cm2/V s, respectively. In the temperature variation of the dielectric constant a phase transition at 343 K was observed at various frequencies. The piezoelectric charge coefficient (d33) was found to be 1.60 pC/N. In the ferroelectric hysteresis loop studies, ZnO exhibited remnant polarization and coercive field at 0.083 µC/cm2 and 3.86 kV/cm, respectively.  相似文献   

17.
We present the relationship between parameters of reactive RF diode sputtering from a zinc oxide (ZnO) target and the crystalline, electrical and optical properties of n-/p-type ZnO thin films. The properties of the ZnO thin films depended on RF power, substrate temperature and, particularly, on working gas mixtures of Ar/O2 and of Ar/N2. Sputtering in Ar+O2 working gas (up to 75% of O2) improved the structure of an n-type ZnO thin film, from fibrous ZnO grains to columnar crystallites, both preferentially oriented along the c-axis normally to the substrate (〈0 0 2〉 direction). These films had good piezoelectric properties but also high resistivity (ρ≈103 Ω cm). ZnO:N p-type films exhibited nanograin structure with preferential 〈0 0 2〉 orientation at 25% N2 and 〈1 0 0〉 orientation for higher N2 content. The presence of nitrogen NO at O-sites forming NO-O acceptor complexes in ZnO was proven by SIMS and Raman spectroscopy. A minimum value of resistivity of 790 Ω cm, a p-type carrier concentration of 3.6×1014 cm−3 and a Hall mobility of 22 cm2 V−1 s−1 were obtained at 75% N2.  相似文献   

18.
Lithium (Li) and nitrogen (N) dual-doped ZnO films with wurtzite structure were prepared by radio-frequency magnetron sputtering ZnO target with Li3N in growth ambient of pure Ar and the mixture of Ar and O2, respectively, and then post annealing techniques. The film showed week p-type conductivity as the ambient was pure Ar, but stable p-type conductivity with a hole concentration of 3.46 × 1017 cm− 3, Hall mobility of 5.27 cm2/Vs and resistivity of 3.43 Ω cm when the ambient is the mixture of Ar and O2 with the molar ratio of 60:1. The stable p-type conductivity is due to substitution of Li for Zn (LiZn) and formation of complex of interstitial Li (Lii) and substitutional N at O site, the former forms a LiZn acceptor, and the latter depresses compensation of Lii donor for LiZn acceptor. The level of the LiZn acceptor is estimated to be 131.6 meV by using temperature-dependent photoluminescence spectrum measurement and Haynes rule. Mechanism about the effect of the ambient on the conductivity is discussed in the present work.  相似文献   

19.
ZnO/Si heterojunctions were fabricated by growing ZnO thin films on p-type Si (100) substrate by pulsed laser deposition without buffer layers. The crystallinity of the heterojunction was analyzed by high resolution X-ray diffraction and atomic force microscopy. The optical quality of the film was analyzed by room temperature (RT) photoluminescence measurements. The high intense band to band emission confirmed the high quality of the ZnO thin films on Si. The electrical properties of the junction were studied by temperature dependent current-voltage measurements and RT capacitance-voltage (C-V) analysis. The charge carrier concentration and the barrier height (BH) were calculated, to be 5.6 × 1019 cm− 3 and 0.6 eV respectively from the C-V plot. The BH and ideality factor, calculated using the thermionic emission (TE) model, were found to be highly temperature dependent. We observed a much lower value in Richardson constant, 5.19 × 10− 7 A/cm2 K2 than the theoretical value (32 A/cm2 K2) for ZnO. This analysis revealed the existence of a Gaussian distribution (GD) with a standard deviation of σ2 = 0.035 V. By implementing the GD to the TE, the values of BH and Richardson constant were obtained as 1.3 eV and 39.97 A/cm2 K2 respectively from the modified Richardson plot. The obtained Richardson constant value is close to the theoretical value for n-ZnO. These high quality heterojunctions can be used for solar cell applications.  相似文献   

20.
The structural, optical and electrical properties of ZnO thin films (260 - 490 nm thick) deposited by direct-current sputtering technique, at a relatively low-substrate temperature (363 K), onto polyethylene terephthalate and glass substrates have been investigated. X-ray diffraction patterns confirm the proper phase formation of the material. Optical transmittance data show high transparency (80% to more than 98%) of the films in the visible portion of solar radiation. Slight variation in the transparency of the films is observed with a variation in the deposition time. Electrical characterizations show the room-temperature conductivity of the films deposited onto polyethylene terephthalate substrates for 4 and 5 h around 0.05 and 0.25 S cm− 1, respectively. On the other hand, for the films deposited on glass substrates, these values are 8.5 and 9.6 S cm− 1 for similar variation in the deposition time. Room-temperature conductivity of the ZnO films deposited on glass substrates is at least two orders of magnitude higher than that of ZnO films deposited onto polyethylene terephthalate substrates under identical conditions. Hall-measurements show the maximum carrier concentration of the films on PET and glass substrate around 2.8 × 1016 and 3.1 × 1020 cm− 3, respectively. This report will provide newer applications of ZnO thin films in flexible display technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号