首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A.A. Al-Ghamdi 《Vacuum》2006,80(5):400-405
The optical constants (absorption coefficient (α), refractive index (n), extinction coefficient (k), real and imaginary part of dielectric constant) have been studied for a-Se96−xTe4Agx (where x=0, 4, 8, 12) thin films as a function of photon energy in the wavelength range (500-1000 nm). It has been found that the optical band gap increases while n and k decreases on incorporation of Ag in Se-Te system. The value of α and k increases, while the value of n decreases with incident photon energy. The results are interpreted in terms of the change in concentration of localized states due to the shift in fermi level. A correlation between the optical band gap and electronegativity of the alloys indicates that the optical band gap increases with the decrease of electronegativity.  相似文献   

2.
Amorphous thin films of glassy alloys of Se75S25 − xCdx (x = 2, 4 and 6) were prepared by thermal evaporation onto chemically cleaned glass substrates. Optical absorption and reflection measurements were carried out on as-deposited and laser-irradiated thin films in the wavelength region of 500-1000 nm. Analysis of the optical absorption data shows that the rule of no-direct transitions predominates. The laser-irradiated Se75S25 − xCdx films showed an increase in the optical band gap and absorption coefficient with increasing the time of laser-irradiation. The results are interpreted in terms of the change in concentration of localized states due to the shift in Fermi level. The value of refractive index increases decreases with increasing photon energy and also by increasing the time of laser-irradiation. With the large absorption coefficient and change in the optical band gap and refractive index by the influence of laser-irradiation, these materials may be suitable for optical disc application.  相似文献   

3.
Thin films of glassy alloys of a-Se80Te20−xPbx (x=2, 6 and 10) was crystallized in a specially designed sample holder under a vacuum of 10−2 Pa. The amorphous and crystallized films were induced by pulse laser (wavelength: 337.1 nm, frequency: 10 Hz, pulse duration: 4 ns and pulse energy: 0.963 mJ). After laser irradiation on amorphous and crystalline films: optical band gaps were measured. Crystallization and amorphization of chalcogenide films is accompanied by the change in the optical band gap. The change in optical energy gap could be determined by identification of the transformed phase. This change in the optical band gap may be due to the increase in the grain size and the reduction in the disorder of the system.  相似文献   

4.
Gex Sb40−x Se60 (x = 0, 2.42 and 23.41 at.%) thin chalcogenide films were deposited on glass and quartz substrates by the conventional thermal evaporation technique at 300 K. The chemical composition of the bulk material and as-deposited films were determined by energy dispersive analysis X-ray spectrometry (EDAX). X-ray diffraction pattern (XRD) of Gex Sb40−x Se60 (x = 0, 2.42 and 23.41 at.%) thin films indicates that they have amorphous structure. The optical transmission and reflection spectra were measured in the range of 500 to 2500 nm. The optical absorption coefficient spectra were studied for deposited samples. It is observed that the optical absorption edge shift to higher energy range, as the germanium content, x, increases in the film. The type of electronic transition, responsible for the optical properties, is indirect allowed transition. It is found that the optical band gap increases as the Ge content increases.The average coordination number (Nc) in Gex Sb40−x Se60 films increases, but the number of chalcogenide atoms remains constant. The number of Ge - Se bonds and the average bond energy of the system increase with the increase of the average coordination number. The optical band gap, Eg, increases with the increase of the average coordination number, (Nc). Also the energy gap, E04, is discussed in terms of its relation to the chemical composition. The dispersion of the refractive index (n) is discussed in terms of the Single Oscillator Model (SOM) (Wimple - Didomenico model). The single oscillator energy (E0), the dispersion energy (Ed) and the optical dielectric constant (?) are also estimated.  相似文献   

5.
Optical properties and conductivity of glassy (As2Se3)3−x(As2Te3)x were studied for 0 ≤ x ≤ 3. The films of the above mentioned compound were prepared by thermal evaporation with thickness of about 250 nm. The optical-absorption edge is described and calculated using the non-direct transition model and the optical band gap is found to be in the range of 0.92 to 1.84 eV. While, the width of the band gap tail exhibits opposite behaviour and is found to be in the range of 0.157 to 0.061 eV, this behaviour is believed to be associated with cohesive energy and average coordination number. The conductivity measurement on the thin films is reported in the temperature range from 280 to 190 K. The conduction that occurs in this low-temperature range is due to variable range hopping in the band tails of localized states, which is in reasonable agreement with Mott's condition of variable range hopping conduction. Some parameters such as coordination number, molar volume and theoretical glass transition temperature were calculated and discussed in the light of the topological bonding structure.  相似文献   

6.
Thin films of Ge28−xSe72Sbx (x=0, 8, 16, 24 at%) with thickness of 200 nm are prepared by thermal evaporation onto glass substrates under vacuum of 5.3×10−5 mbar. Optical reflectance and transmittance of these films are measured at room temperature in the light wavelength region from 200 to 1100 nm. The estimated optical energy gap, Eg, is found to decrease from 2 eV (0 at% Sb) to 1.5 eV (24 at% Sb), whereas the band tail width, Ee, increases from 0.062 to 0.077 eV, respectively. The refractive index, n, and extinction coefficient, κ, are determined as functions of wavelength. The DC electrical conductivity, σ, of films is measured as a function of temperature in the range from 300 to 360 K. The extracted value of activation energy, ΔE, is found to decrease from 0.95 eV (0 at% Sb) to 0.74 eV (24 at% Sb). Optical and electrical behavior of films can be explained in terms of cohesive energy (CE) and Se-Se defect bonds.  相似文献   

7.
Thin films of Cu2Te were deposited, at room temperature, on glass substrates by magnetron sputtering from independent Cu and Te sources. This work presents the effect of annealing temperature on the optical, structural, and electrical properties of sputtered Cu2Te films. Annealing above 300 °C resulted in stoichiometric and near stoichiometric Cu2Te phases, whereas temperatures above 400 °C yielded films with single Cu2Te phase. In contrast, annealing at temperatures of 250 °C and below resulted in mixed phases of CuTe, Cu7Te5, Cu1.8Te, and Cu2Te. Analyses of transmittance and reflectance measurements for Cu2Te indicate that photon absorption occurs via indirect band transitions for incident photons with energy above the band gap energy and free carrier absorption below the band gap energy. The determined indirect band gap was 0.90 eV and its associated phonon energy was 0.065 eV. Optical phonon scattering was identified as the mechanism through which the momentum is conserved during absorption by free carriers. Electrical measurements show p-type conductivity and highly degenerate semiconducting behavior with a hole carrier concentration p = 5.18 × 1021 cm− 3.  相似文献   

8.
Large area electronics require large size thin films whose eventual inhomogeneities arise as a problem. Hydrogenated amorphous silicon carbide thin films (a-Si1−xCx:H) for four different source gas mixtures at two power densities were deposited by plasma enhanced chemical vapor deposition (PECVD) technique. The degree of film homogeneity was investigated through measurements of deposition rate, refractive index and optical energy gap along the radial direction of bottom electrode. Both ellipsometer at various incident angles and optical transmittance at normal incidence were used in mutual control as diagnosing tools. It seems there is a critical power density beyond which inhomogeneities of the deposited films along the radial direction of the electrode are unavoidable.  相似文献   

9.
N. El-Kabany 《Vacuum》2010,85(1):5-9
Thin films of the glasses Ge10 Se90−x Tex (0 ≤ x ≥ 40) have been prepared by melt quenching technique; thin films were evaporated at a pressure of ≈10−4 Pa. The optical absorption behavior of these thin films was studied from the reflection and transmission spectrum in the spectral range 200-1200 nm. The optical constants i.e optical band gap (Eopt), absorption coefficient, refractive index (n) are calculated. The optical band gap has been estimated using Tauc extrapolation and found to decrease with Te content. The Dispersion of refractive index has been studied in terms of Wemple - Di Domenico model. The value of static refraction index has been found to increase with Te content. The distribution of the possible chemical bonds has been calculated. The obtained results were correlated with the character of the chemical bond for the prepared compositions through a study of parameters such as average heat of atomization (Hs), the cohesive energies of the bonds (CE), The mean bond energy <E> and average coordination number (m).  相似文献   

10.
The structural, optical, and electronic properties of thin films of a family of wide band gap (Eg > 2.3 eV) p-type semiconductors Cu3TaQ4 (Q = S or Se) are presented. Thin films prepared by pulsed laser deposition of ceramic Cu3TaQ4 targets and ex-situ annealing of the as-deposited films in chalcogenide vapor exhibit mixed polycrystalline/[100]-directed growth on amorphous SiO2 substrates and strong (100) preferential orientation on single-crystal yttria-stabilized zirconia substrates. Cu3TaS4 (Eg = 2.70 eV) thin films are transparent over the entire visible spectrum while Cu3TaSe4 (Eg = 2.35 eV) thin films show some absorption in the blue. Thin film solid solutions of Cu3TaSe4 − xSx and Cu3TaSe4 − xTex can be prepared by annealing Cu3TaSe4 films in a mixed chalcogenide vapor. Powders and thin films of Cu3TaS4 exhibit visible photoluminescence when illuminated by UV light.  相似文献   

11.
The photovoltaic Cd1−xZnxS thin films, fabricated by chemical bath deposition, were successfully used as n-type buffer layer in CuInGaSe2 (CIGS) solar cells. Comprehensive optical properties of the Cd1−xZnxS thin films were measured and modeled by spectroscopic ellipsometry (SE), which is proven to be an excellent and non-destructive technique to determine optical properties of thin films. The optical band gap of Cd1−xZnxS thin films can be tuned from 2.43 eV to 3.25 eV by controlling the Zn content (x) and deposition conditions. The wider-band-gap Cd1−xZnxS film was found to be favorable to improve the quantum efficiency in the wavelength range of 450-550 nm, resulting in an increase of short-circuits current for solar cells. From the characterization of quantum efficiency (QE) and current-voltage curve (J-V) of CIGS cells, the Cd1−xZnxS films (x = 0.32, 0.45) were demonstrated to significantly enhance the photovoltaic performance of CIGS solar cell. The highest efficiency (10.5%) of CIGS solar cell was obtained using a dense and homogenous Cd0.68Zn0.32S thin film as the buffer layer.  相似文献   

12.
Se75−xTe25Inx (x = 0, 3, 6, & 9) bulk glasses were obtained by melt quench technique. Thin films of thickness 400 nm were prepared by thermal evaporation technique at a base pressure of 10−6 Torr onto well cleaned glass substrate. a-Se75−xTe25Inx thin films were annealed at different temperatures for 2 h. As prepared and annealed films were characterized by X-ray diffraction and UV–Vis spectroscopy. The X-ray diffraction results show that the as-prepared films are of amorphous nature while it shows some poly-crystalline structure in amorphous phases after annealing. The optical absorption spectra of these films were measured in the wavelength range 400–1100 nm in order to derive the extinction and absorption coefficient of these films. It was found that the mechanism of optical absorption follows the rule of allowed non-direct transition. The optical band gap of as prepared and annealed films as a function of photon energy has been studied. The optical band gap is found to decrease with increase in annealing temperature in the present glassy system. It happens due to crystallization of amorphous films. The decrease in optical band gap due to annealing is an interesting behavior for a material to be used in optical storage. The optical band gap has been observed to decrease with the increase of In content in Se–Te glassy system.  相似文献   

13.
Thin films were thermally evaporated from the bulk glasses of As40Se60 − xSbx (with x = 0, 5, 10, 15 at.%) under high vacuum. We have characterized the deposited films by Fourier Transform Infrared spectroscopy. The relationship between the structural and optical properties and the compositional variation has been investigated. Increasing Sb content was found to affect the thermal and optical properties of these films. Non-direct electronic transition was found to be responsible for the photon absorption inside the investigated films. It was found that, the optical band gap Eo decreases while the width of localized states (Urbach energy) Ee increases.  相似文献   

14.
CuIn1 − xGaxTe2 thin films with x = 0, 0.5 and 1, have been prepared by flash evaporation technique. These semiconducting layers present a chalcopyrite structure. The optical measurements have been carried out in the wavelength range 200-3000 nm. The linear dependence of the lattice parameters as a function of Ga content obeying Vegard's law was observed. The films have high absorption coefficients (4 · 104 cm− 1) and optical band gaps ranging from 1.06 eV for CuInTe2 to 1.21 eV for CuGaTe2. The fundamental transition energies of the CuIn1 − xGaxTe2 thin films can be fitted by a parabolic equation namely Eg1(x) = 1.06 + 0.237x − 0.082x2. The second transition energies of the CuInTe2 and CuGaTe2 films were estimated to be: Eg2 = 1.21 eV and Eg2 = 1.39 eV respectively. This variation of the energy gap with x has allowed the achievement of absorber layers with large gaps.  相似文献   

15.
Rahana Yoosuf 《Thin solid films》2007,515(15):6188-6191
An insurmountable disadvantage of CuInSe2 is the low band gap, which limits the open-circuit voltage to value well below 500 mV in solar cells. The incorporation of sulfur into CuInSe2 thin film was investigated to establish a scientific basis for the graded band gap CuIn(Se1 − x,Sx)2 thin films. CuIn(Se1 − x,Sx)2 thin films were obtained by reactive annealing of Cu11In9 precursors in a mixture of sulfur and selenium atmosphere while post-sulfurization of single phase CuInSe2 did not result in CuIn(Se1 − x,Sx)2 thin films. A band gap of 1.36 eV, was obtained for the prepared CuIn(Se1 − x,Sx)2.  相似文献   

16.
Ba(Ti1  x,Nix)O3 ferroelectric thin films with perovskite structure are prepared on fused quartz substrates by a sol-gel process. Optical transmittance measurements indicate that Ni-doping has an obvious effect on the energy band structure of BaTiO3. It has been found that the refractive index n, extinction coefficient k, and band gap energy Eg of the films are functions of the film composition. The Eg of Ba(Ti1  x,Nix)O3 decreases approximately linearly as the Ni content increases, which is attributed to the decline of conduction band energy level with increasing the Ni content. On the other hand, n and k both increase linearly with increasing the Ni content because of the increase of packing density. These results indicate that thin films might have potential applications in BaTiO3-based thin-film optical devices.  相似文献   

17.
Thin films of Bi2Se3, Bi2Se2.9Te0.1, Bi2Se2.7Te0.3 and Bi2Se2.6Te0.4 are prepared by compound evaporation. Micro structural, optical and electrical measurements are carried out on these films. X-ray diffraction pattern indicates that the as-prepared films are polycrystalline in nature with exact matching of standard pattern. The composition and morphology are determined using energy dispersive X-ray analysis and scanning electron microscopy (SEM). The optical band gap, which is direct allowed, is 0.67 eV for Bi2Se3 thin films and the activation energy is 53 meV. Tellurium doped thin films also show strong optical absorption corresponding to a band gap of 0.70-0.78 eV. Absolute value of electrical conductivity in the case of tellurium doped thin film shows a decreasing trend with respect to parent structure.  相似文献   

18.
We synthesized polycrystalline Bi2 + xTe3 − x (− 0.2< x <0.2) thin films by electrodeposition in acidic medium. Since Bi2Te3-like structure may be uniaxially anisotropic due to its rhombohedral crystallographic system, we investigated their optical behavior using ex and in situ Mueller matrix spectroscopic ellipsometry in the wavelength range of 470 to 830 nm (1.5-2.6 eV). We found that room-temperature electroplated polycrystalline appears optically isotropic and that no depolarization effect occurs from the first steps of growth until several micrometers thick films. Additional ex situ measurements permit to obtain their optical constants from far-ultraviolet to near-infrared (190-2100 nm).  相似文献   

19.
Cd1-xZnxSe (x = 0, 0.5 and 1) thin films have been deposited onto glass substrates using thermal evaporation technique. The lattice constants, grain size, microstrain and dislocation density were studied by using X-ray diffraction. In addition the optical constants were calculated in the wavelength range 400-2500 nm. Transmittance and reflectance were used to calculate the absorption coefficient α and the optical band gap Eg. The linear relation of (αhυ)2 as a function of photon energy hυ for the thin films illustrated that the films exhibit a direct band gap, which increases with increasing Zn content. This increasing of optical band gap was interpreted in accordance to the increasing in the cohesive energy. Optical constants, such as refractive index n, optical conductivity σopt, complex dielectric constant, relaxation time τ and dissipation factor tanδ were determined. The optical dispersion parameters E0, Ed were determined according to Wemple and Di Domenico method.  相似文献   

20.
Experimental ellipsometric studies of Hf1−xTixO2 thin films were carried out to determine refractive indices as well as spectrometric studies of these films were carried out to determine interferential transmission spectra. The dispersion curves of the refractive indices are well described by the optical-refractometric relation. Compositional dependences of optical pseudogap and refractive indices of Hf1−xTixO2 thin films are investigated. Effect of compositional disordering on the optical absorption edge in Hf1−xTixO2 thin films is studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号