首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Steam reforming of methanol in fixed‐bed and hybrid reactors, namely, traditional fixed‐bed reactor (FBR1), fixed‐bed reactor with H2‐selective membrane (FBR2), and fixed‐bed reactor with CO2 adsorption (FBR3) is thermodynamically analyzed. The performance of these reactors is compared in terms of quality and quantity of H2 production for fuel cell application. In FBR2 and FBR3, the contents of undesired products CO, CH4, and carbon are highly reduced.  相似文献   

2.
The effect of methanol crossover on the fuel utilization of a passive direct methanol fuel cell (DMFC) was reported. The results revealed that the Faradaic efficiency decreased from 46.9 to 17.4% when methanol concentration increased from 1.0 to 8.0 mol L–1 at the lower current density 11.1 mA cm–2. However, the Faradaic efficiency increased from 14.7 to 31.3% when methanol concentration increased from 1.0 to 8.0 mol L–1 at a higher current density of 44.4 mA cm–2. On the other hand, although the amount of methanol was increased, the Faradaic efficiency did not change, obviously due to the uniform methanol crossover and methanol diffusion at the same methanol concentration and constant current.  相似文献   

3.
J. Geng  X. Li  G. Sun  B. Yi 《Fuel Cells》2010,10(4):608-612
This paper presents a simple and reliable pumpless methanol feeding (PLMF) method for application in direct methanol fuel cell (DMFC) systems. The primary feature and advantage of the PLMF is as follows: it employs an approach that allows the cathode gas pressure to be connected with a fuel container for supplying the methanol fuel into the anode fuel loop, instead of using any feeding pump or other specially designed apparatuses. The PLMF has been used in a portable 25 W DMFC system and realised feeding methanol in real time for meeting the requirements of the system. The PLMF method not only is suitable for the DMFC system, but also can be used in other liquid‐feeding fuel cell systems.  相似文献   

4.
郝少军  吴锋  陈实  孙杰  刘媛 《辽宁化工》2004,33(3):127-129,179
研究了甲醇水蒸气重整制氢反应过程中各种因素对Cu/ZnO/Al2O3催化剂的活性和选择性的影响.结果表明:Cu/Zn比为2.0的催化剂在250℃反应时,催化剂效果较好,最合适反应条件是:压力0.1 MPa,温度250℃,n(H2O)∶n(CH3OH)=1.0~1.2,液体流速0.1 mL/min.在Cu/ZnO/Al2O3催化剂上,甲醇水蒸气重整、甲醇分解和水气转换反应随反应条件的不同而发生相互抑制或促进作用.  相似文献   

5.
A miniaturized methanol steam reformer with a serpentine type of micro-channels was developed based on poly-dimethylsiloxane (PDMS) material. This way of fabricating micro-hydrogen generator is very simple and inexpensive. The volume of a PDMS micro-reformer is less than 10 cm3. The catalyst used was a commercial Cu/ZnO/Al2O3 reforming catalyst from Johnson Matthey. The Cu/ZnO/Al2O3 reforming catalyst particles of mean diameter 50-70 μm was packed into the micro-channels by injecting water based suspension of catalyst particles at the inlet point. The miniaturized PDMS micro-reformer was operated successfully in the operating temperatures of 180-240 °C and 15%-75% molar methanol conversion was achieved in this temperature range for WHSV of 2.1-4.2 h−1. It was not possible to operate the micro-reformer made by pure PDMS at temperature beyond 240 °C. Hybrid type of micro-reformer was fabricated by mixing PDMS and silica powder which allowed the operating temperature around 300 °C. The complete conversion (99.5%) of methanol was achieved at 280 °C in this case. The maximum reformate gas flow rate was 30 ml/min which can produce 1 W power at 0.6 V assuming hydrogen utilization of 60%.  相似文献   

6.
Empirical model equations, proposed for polymer electrolyte fuel cells, are used to predict the cell voltage vs. current density response of a liquid feed direct methanol fuel cell. The model equations are validated against experimental data for a small-scale fuel cell over a wide range of methanol concentration and temperatures. A new empirical equation is presented which is able to predict the voltage response of liquid feed direct methanol fuel cells over a wide range of operating conditions and even in the case of very low current densities caused by, for example, the use of dilute methanol solutions or low cell temperatures.  相似文献   

7.
The direct methanol fuel cell (DMFC) has been discussed recently as an interesting option for a fuel‐cell‐based mobile power supply system in the power range from a few watts to several hundred kilowatts. In contrast to the favoured hydrogen‐fed fuel cell systems (e.g. the polymer electrolyte membrane fuel cell, PEMFC), the DMFC has some significant advantages. It uses a fuel which is, compared to hydrogen, easy to handle and to distribute. It also comprises a fairly simple system design compared to systems utilising liquid fuels (like methanol) to produce hydrogen from them by steam reforming or partial oxidation to finally feed a standard PEMFC. Nevertheless, many severe problems still exist for the DMFC, hindering its competitiveness as an option to hydrogen‐fed fuel cells. This work reviews the major research activities concerned with the DMFC by highlighting the problems (slow kinetics of the anodic methanol oxidation, methanol permeation through the membrane, carbon dioxide evolution at the anode) and their possible solutions. Special attention is devoted to the steady state and dynamic simulation of these fuel cell systems.  相似文献   

8.
直接甲醇燃料电池技术及应用   总被引:4,自引:0,他引:4  
本文回顾了直接甲醇燃料电池(DMFC)的研究开发历史,系统阐述了DMFC系统中电催化剂选择与设计基本原则、电解质膜材料与甲醇渗透的关系。分析了电池工作温度、工作压力和甲醇进料方式对DMFC电化学性能的影响。  相似文献   

9.
A model is presented for the liquid feed direct methanol fuel cell, which describes the hydraulic behavior of an internally manifolded cell stack. The model is based on the homogeneous two‐phase flow theory and mass conservation equation. The model predicts the pressure drop behavior of an individual fuel cell, and is used to calculate flow distribution through fuel cell stack internal manifolds. The flow distribution of the two‐phase fluids in the anode and the cathode chambers is predicted as a function of cell operating parameters. An iterative numerical scheme is used to solve the differential equations for longitudinal momentum and continuity.  相似文献   

10.
A Cu/ZnO/Al2O3 nanocatalyst was applied for hydrogen production via steam reforming of methanol in a fixed‐bed reactor. Modified forms of the catalyst were prepared by adding small amounts of Ba, Zr, and Ce oxides. The catalysts were characterized by means of N2 adsorption‐desorption, X‐ray diffraction, and scanning electron microscope techniques. Full factorial design was used to optimize the required number of experiments and evaluate the catalytic activity in a fixed‐bed reactor. The oxide additives reduced the production of carbon monoxide and increased the selectivity of carbon dioxide as well as the yield of hydrogen production. Among the studied catalysts, the Cu/ZnO/Al2O3/CeO2/ZrO2 catalyst presented the best performance.  相似文献   

11.
A CFD model is created to analyze methanol transport in a flowing electrolyte direct methanol fuel cell (FE-DMFC) by solving the 3D advection-diffusion equation, with consideration of electro-osmosis. The average methanol flux at the anode and cathode surfaces is simulated and compared to equivalent direct methanol fuel cells. Methanol crossover is defined as methanol flux at the cathode surface, and the results reveal that methanol crossover can be drastically reduced by the flowing electrolyte. The performance of the FE-DMFC at peak power current density is evaluated, and diffusion is shown to be the dominant contribution, although electro-osmosis increases with current density. The power consumption of the electrolyte pump is shown to be negligible compared to the cell power output. This indicates that thin electrolyte channels with high flow rates could further improve the efficiency.  相似文献   

12.
P. Britz  N. Zartenar 《Fuel Cells》2004,4(4):269-275
Viessmann is developing a PEM fuel cell system for residential applications. The uncharged PEM fuel cell system has a 2 kW electrical and 3 kW thermal power output. The Viessmann Fuel Processor is characterized by a steam‐reformer/burner combination in which the burner supplies the required heat to the steam reformer unit and the burner exhaust gas is used to heat water. Natural gas is used as fuel, which is fed into the reforming reactor after passing an integrated desulphurisation unit. The low temperature (600 °C) fuel processor is designed on the basis of steam reforming technology. For carbon monoxide removal, a single shift reactor and selective methanisation is used with noble metal catalysts on monoliths. In the shift reactor, carbon monoxide is converted into hydrogen by the water gas shift reaction. The low level of carbon monoxide at the outlet of the shift reactor is further reduced, to approximately 20 ppm, downstream in the methanisation reactor, to meet PEM fuel cell requirements. Since both catalysts work at the same temperature (240 °C), there is no requirement for an additional heat exchanger in the fuel processor. Start up time is less than 30 min. In addition, Viessmann has developed a 2 kW class PEFC stack, without humidification. Reformate and dry air are fed straight to the stack. Due to the dry operation, water produced by the cell reaction rapidly diffuses through the electrolyte membrane. This was achieved by optimising the MEA, the gas flow pattern and the operating conditions. The cathode is operated by an air blower.  相似文献   

13.
Primary energy savings and CO2 reduction is one of the key motivations for the use of fuel cell systems in the energy sector. A benchmark of domestic cogeneration by PEMFC with existing large scale power production systems such as combined steam‐gas turbine cycle, clearly reveals that only fuel cell systems optimising overall energy efficiency (> 85%) and electrical efficiencies (> 35%) show significant primary energy savings, about 10%, compared with the best competing technology. In this context, fuel processing technology plays a dominant role. A comparison of autothermal and steam reforming concepts in a PEMFC system shows inherent advantages in terms of efficiency at low complexity for the latter. The main reason for this is that steam reforming allows for the straightforward and effective use of the anode‐off gas energy in the reformer burner. Consequently, practical electrical system efficiencies over 40% seem to be achievable, most likely by steam reformers. FLOX®‐steam reforming technology has reached a high state of maturity, offering diverse advantages including: compact design, stable anode off‐gas usage, high efficiency, as well as simple control behaviour. Scaling of the concept is straightforward and offers an opportunity for efficient adaptation to smaller (1 kW) and larger (50 kW) units.  相似文献   

14.
The application of methanol sensor‐less control in a direct methanol fuel cell (DMFC) system eliminates most of the problems encountered when using a methanol sensor and is one of the major solutions currently used in commercial DMFCs. This study focuses on analyzing the effect of the operating characteristics of a DMFC system on its performance under the methanol sensor‐less control as developed by Institute of Nuclear Energy Research (INER). Notably, the influence of the dispersion of the methanol injected on the behavior of the system is investigated systematically. In addition, the mechanism of the methanol sensor‐less control is investigated by varying factors such as the timing of the injection of methanol, the cathode flow rate, and the anode inlet temperature. These results not only provide insight into the mechanism of methanol sensor‐less control but can also aid in the improvement and application of DMFC systems in portable and low‐power transportation.  相似文献   

15.
Y. Lee  T. K. Kim  Y. S. Choi 《Fuel Cells》2013,13(2):173-180
Effects of porosity of catalyst layers (CLs) on direct methanol fuel cell (DMFC) performances are investigated using silicon dioxide (SiO2) particles as a pore former. The pore size and volume of CLs are controlled by changing the size and content of SiO2. As the size of pore formed by removal of SiO2 increases, DMFC performances are enhanced. The augmentation in performances can be explained by facilitation of fuel transport to catalyst particles, increase of utilization efficiency of catalysts, diminishment in methanol crossover, reduction in activation loss and facilitation of water discharging out of CLs of cathode due to the controlled porosity in CLs. The enhanced fuel transport, accessibility of fuels to Pt catalyst surface, is proved by the active areas of Pt catalyst. In addition to the active area of Pt catalyst, porous CLs exhibit a decline in methanol crossover, leading to increase of open circuit voltage (OCV). The porous CLs also show improvements in activation loss due to high porosity, causing enhancement in DMFC performances. In aspect of pore volume contribution to cathode performance, the SiO2 content is optimized. Based on the DMFC performances, it can be suggested that the optimum conditions of SiO2 are 500 nm in size and 20 wt.% in content. The porosity effect on both electrodes appears as follows: the pores in cathode are more effective on DMFC performances (55.5%) than those of anodes (44.5%) based on the maximum power of DMFC, indicating that the pores in CLs facilitate removal of water from electrodes.  相似文献   

16.
The effect of varying operating parameters on the degradation of a single‐cell direct methanol fuel cell (DMFC) with serpentine flow channels was investigated. Fuel cell internal temperature, methanol concentration, and air and methanol flow rates were varied in experimental tests and fuel cell performance was chronologically recorded. A DMFC semi‐empirical performance model was developed to predict the polarization curves of the DMFC and validated at different operating conditions. Performance degradation was observed and modeled over time by a linear regression model. Unlike previous studies, the cumulative exposure of the operating factors to the fuel cell was considered in the degradation analysis. The degradation model shows the cell voltage generation capacity does not significantly degrade. However, the Tafel slope of the cell changes with cumulative exposure to methanol concentration and air flow, and the ohmic resistance changes with cumulative exposure to temperature, methanol and air flow.  相似文献   

17.
王丽  杨云裳  裴春娟 《当代化工》2014,(11):2406-2408
直接甲醇燃料电池(DMFC)阳极催化剂是直接甲醇燃料电池的关键材料之一。由于钯的价格便宜、储量丰富、在碱性条件下活性较高,成为取代铂作为DMFC的潜在的阳极催化剂。着重介绍了近年来钯基阳极催化剂在碱性条件下对甲醇的电氧化的研究进展,展望了其发展前景。  相似文献   

18.
Hybrid membranes incorporating an inorganic and organic component are receiving much attention as promising solid electrolytes for fuel cells. Recent developments in the approaches to the preparation of hybrid membranes are described. The preparation and characterisation, including their performance in a hydrogen – oxygen fuel cell, of two examples of hybrid systems based on sulfonated polyaryletherketone are described. The examples are chosen to illustrate the formation in situ of inorganic particles, either in a pre-formed membrane, or in a polymer solution. sPEEK-modified silica and sPEEK-zirconium phosphate membranes provide power densities of 0.62 W/cm2 at 100 °C.  相似文献   

19.
The activity of in house prepared carbon-supported Pt-Ru catalysts for methanol oxidation and carbon-supported RuSe for the oxygen reduction reaction in direct methanol fuel cells (DMFCs) was investigated. The composition of Pt-Ru/C was varied both in terms of weight loading (ratio of total metal content to carbon) as well as the ratio of Pt to Ru. The measurements were carried out in a half cell arrangement in sulphuric acid at various temperatures. The weight loading and ratio of Pt to Ru were varied in order to find out the optimum weight loading of precious metal and the temperature dependence of Pt to Ru ratio on methanol oxidation reaction. It has been found that there exists an optimum in the weight loading at 60 wt.% for carbon-supported Pt-Ru catalyst towards its maximum mass activity. While 1:1 Pt to Ru ratio exhibits a higher activity than 3:2 Pt:Ru above 60 °C, 3:2 ratio exhibits a higher activity at lower temperature. It has been observed that RuSe is inactive towards methanol and it is realised that RuSe is a potential candidate as methanol tolerant oxygen reduction catalyst. The activity of carbon supported RuSe for oxygen reduction reaction (ORR) was tested in sulphuric acid in the presence of methanol. Even though the mass specific activity of the RuSe catalyst is somewhat lower than that of Pt/C, the surface activity of carbon-supported RuSe is superior than that of carbon supported Pt which indicate the unfavourable size distribution of RuSe/C catalyst.  相似文献   

20.
Titanate nanotubes (TNTs) about 10 nm in diameter and 200–600 nm in length were hydrothermally synthesized, and then incorporated into a chitosan (CS) matrix to fabricate chitosan/titanate nanotube (CS/TNT) hybrid membranes for a direct methanol fuel cell (DMFC). These hybrid membranes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray powder diffraction (XRD), thermogravimetry (TG), and positron annihilation lifetime spectroscopy (PALS). Moreover, their performances, including mechanical strength, water and methanol uptake, methanol permeability, and proton conductivity were determined. SEM results demonstrated that TNTs dispersed homogeneously in the hybrid membranes. Mechanical strength and TG measurements demonstrated that the mechanical and thermal stability of CS/TNT hybrid membranes were much higher than those of pure chitosan membranes. PALS analysis revealed that the fractional free volume (FFV) of CS/TNT hybrid membranes increased with the incorporation of TNTs and, thus, resulting in the reduction of methanol crossover. In all as‐prepared membranes, the hybrid membrane containing 15 wt % TNTs exhibited the highest mechanical strength of 85.0 MPa, low methanol permeability of 0.497 · 10–6 cm2·s–1, and proton conductivity of 0.0151 S·cm–1, which had the potential for DMFC applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号