首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT

In this study, electrolyte materials were synthesized by mixing a highly conducting salt (K2CO3) with the poly(vinyl alcohol) (PVA) in different proportions (from 10 to 50 wt.%). The synthesized electrolyte was characterized using Fourier transform infrared (FTIR) spectroscopy, field-emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV) for their functional groups, morphology, thermal stability, glass transition temperature (Tg ), ionic conductivity, and potential window, respectively. Characterization results show that the complex formation between PVA and K2CO3 salt has been established by FTIR spectroscopic study, which indicates the detailed interaction between PVA and the salts in PVA-K2CO3 composites while the amorphous nature of the electrolyte after incorporation of the salts has been confirmed by FESEM analysis. Similarly, TGA and DSC analysis revealed that both decomposition temperature and Tg of the synthesized electrolytes decrease with the addition of K2CO3 due to the strong plasticizing effect of the salt. The results confirm that the electrolytes have sufficient thermal stability for supercapacitor operation, as well as an amorphous phase to effectively deliver high ionic conductivity. The highest ionic conductivity of 4.53 × 10?3 S cm?1 at 373 K and potential window of 2.7 V was exhibited by PK30 (30 wt.% K2CO3), which can be considered as high value for solid-state electrolytes which are superior to those electrolytes from PVA salts earlier reported. The results similarly show that the prepared electrolyte is temperature-dependent as conductivity increase with increase in temperature. Based on these properties, it can be imply that the PVA-K2CO3 gel polymer electrolyte (GPE) could be a promising electrolyte candidate for EDLC applications. The results indicate that the PVA-K2CO3 as a new electrolyte material has great potential in practical applications of portable energy-storage devices.  相似文献   

2.
《分离科学与技术》2012,47(16):2683-2694
ABSTRACT

In this work, ordered mesoporous SBA-15 was synthesized and functionalized by polyethyleneimine (PEI). The morphological properties were characterized by N2 adsorption/desorption, field–emission scanning electron microscopy (FE-SEM), high–resolution transmission electron microscopy (HR-TEM) and Fourier transform infrared (FTIR) spectroscopy methods. The carbon dioxide (CO2) uptake on the sorbents, kinetics of CO2 adsorption/desorption and long-term multicycle stability of PEI-impregnated sorbent were measured. An optimal amine loading of 50 wt.% showed a CO2 adsorption capacity ~3.09 mmol g?1 using 10% pre-humidified CO2 at 75°C. The presence of moisture in flue gas showed a promoting effect in CO2 sorption capacity. The temperature swing adsorption/desorption cycles showed excellent multicycle stability over 60 cycles during 65 h of operations under humid CO2.  相似文献   

3.
Catalytic pyrolysis of pine wood was carried out in a fixed-bed reactor heated slowly from room temperature to 700 °C under a stream of purging argon to examine the effects of the physically mixed K2CO3 or Ca(OH)2 on the pyrolysis behaviors. K2CO3 demonstrated a stronger catalysis for decomposition of hemicellulose, cellulose and lignin constituents, leading to the reduced yield of liquid product in conjunction with the increased yields of gaseous and char products because of the promoted secondary reactions of liquid product. With the addition of 17.7 wt.% of K2CO3, none of saccharides, aldehydes and alcohols was formed and the formation of acids, furans and guaiacols was substantially reduced, whereas the yields of alkanes and phenols were increased. Potassium led to an increase in the cumulative yields of H2, CO2 and CO at 700 °C. Ca(OH)2 somewhat promoted the decomposition of cellulose and lignin constituents, and the effect of Ca(OH)2 on the yields of liquid and char was opposite to that of K2CO3. With the addition of 22.2 wt.% Ca(OH)2, some groups of liquid product such as acids and aldehydes disappeared completely and the yields of saccharides, furans and guaiacols were somewhat reduced, while the yield of alcohols was remarkably increased in contrast to the result of K2CO3. The addition of Ca(OH)2 did not significantly change the total yield of gaseous product at 700 °C but enhanced the yield of H2.  相似文献   

4.
A new regenerable alumina-modified sorbent was developed for CO2 capture at temperatures below 200 °C. The CO2 capture capacity of a potassium-based sorbent containing Al2O3 (KAlI) decreased during multiple CO2 sorption (60 °C) and regeneration (200 °C) tests due to the formation of the KAl(CO3)(OH)2 phase, which could be converted into the original K2CO3 phase above 300 °C. However, the new regenerable potassium-based sorbent (Re-KAl(I)) maintained its CO2 capture capacity during multiple tests even at a regeneration temperature of 130 °C. In particular, the CO2 capture capacity of the Re-KAl(I)60 sorbent which was prepared by the impregnation of Al2O3 with 60 wt.% K2CO3 was about 128 mg CO2/g sorbent. This excellent CO2 capture capacity and regeneration property were due to the characteristics of the Re-KAl(I) sorbent producing only a KHCO3 phase during CO2 sorption, unlike the KAlI30 sorbent which formed the KHCO3 and KAl(CO3)(OH)2 phases even at 60 °C. This result was explained through the structural effect of the support containing the KAl(CO3)(OH)2 phase which was prepared by impregnation of Al2O3 with K2CO3 in the presence of CO2.  相似文献   

5.
By using immobilized lipase for production of monoacylglycerol (MAG) by solid-phase glycerolysis of fats and oils, the enzyme could be recovered easily from the reaction mixture and recycled to reduce the cost of the catalyst. Several support materials (CaCO3, CaSO4·2H2O, Ca2P2O7, and Celite) were screened for immobilization of Pseudomonas sp. lipase by adsorption and tested for solid-phase glycerolysis of olive oil. Immobilization made the reuse of enzyme feasible. CaCO3 proved to be the best support: 90% MAG (wt% in the glycerolfree reaction mixture after 72 h of reaction time) was obtained until the fifth use, 80% after the seventh use, and 60% after the tenth use. The same support was found suitable for immobilization of two other bacterial lipases from Chromobacterium viscosum and Pseudomonas pseudoalkali.  相似文献   

6.
Catalytic activities of synthesized solid base catalysts (alumina loaded with solution of different potassium compounds such as KI, KF, K2CO3, and KNO3 with the loading amount of 35 wt.%) were tested for the transesterification reaction of canola oil with methanol and ethanol in a batch reactor in a temperature range of 25–60°C and different feed ratios of methanol/oil between 6:1 and 18:1. Synthesized KF/Al2O3 solid base catalyst showed the highest activity in the transesterification of canola oil with methanol and gave much stabler methyl ester content during the reaction with the highest yield of 99.6% at the end of the eight-hour reaction time at 60°C, with a methanol/oil ratio of 15:1 and a catalyst amount of 3 wt.%. Formation of K2O phase and the formation of the surface Al-O-K groups by salt-support interactions were observed during the synthesis of the catalysts. Methanol was found to be much more reactive than ethanol in the transesterification reaction.  相似文献   

7.
In the present study, we synthesized biodiesel from soybean oil through a transesterification reaction catalyzed by lithium carbonate. Under the optimal reaction conditions of methanol/oil molar ratio 32:1, 12 % (wt/wt oil) catalyst amount, and a reaction temperature of 65 °C for 2 h, there was a 97.2 % conversion to biodiesel from soybean oil. The present study also evaluated the effects of methanol/oil ratio, catalyst amount, and reaction time on conversion. The catalytic activity of solid base catalysts was insensitive to exposure to air prior to use in the transesterification reaction. Results from ICP-OES exhibited non-significant leaching of the Li2CO3 active species into the reaction medium, and reusability of the catalyst was tested successfully in ten subsequent cycles. Free fatty acid in the feedstock for biodiesel production should not be higher than 0.12 % to afford a product that passes the EN biodiesel standard. Product quality, ester content, free glycerol, total glycerol, density, flash point, sulfur content, kinematic viscosity, copper corrosion, cetane number, iodine value, and acid value fulfilled ASTM and EN standards. Commercially available Li2CO3 is suitable for direct use in biodiesel production without further drying or thermal pretreatment, avoiding the usual solid catalyst need for activation at high temperature.  相似文献   

8.
In this work, the effect of promoter type (Mg, Mn, Ce, Co, Fe and Ni) on selective CO oxidation performance of Au/γ-Al2O3 was studied with the realistic feed stream containing CO2 and H2O. The effects of Au loading, promoter loading, reaction temperature and the feed composition were also investigated. It was found that MgO was the best promoter in the presence of CO2 and H2O, and 1.25 wt.% Mg was sufficient for promotion. The CO conversion decreased with the addition of CO2 while the presence of H2O had some positive effects.  相似文献   

9.
An effect of nanosize CaCO3 on physical, mechanical, thermal and flame retarding properties of PBR was compared with commercial CaCO3 and fly ash filled PBR. CaCO3 at the rate of 9, 15, and 21 nm were added in polybutadiene rubber (PBR) at 4, 8 and 12 wt.% separately. Properties such as swelling index, specific gravity, tensile strength, Young's modulus, elongation at break, modulus at 300% elongation, glass transition temperature, decomposition temperature, flame retardency, hardness, and abrasion resistances were determined. The swelling index decreased and specific gravity increased with reduction in particle size of fillers in PBR composites. There was significant improvement in physical, mechanical, thermal and flame-retarding properties of PBR composites due to a reduction in the particle size of fillers. Maximum improvement in mechanical and flame retarding properties was observed at 8 wt.% of filler loading. This increment in properties was more pronounced in 9 nm size CaCO3. The results were not appreciable above 8 wt.% loading of nano fillers because of agglomeration of nanoparticles. In addition, an attempt was made to consider some thermodynamically aspects of resulting system. The cross-linkage density has been assessed by Flory-Rehner equation in which free energy was increased with increase in filler content.  相似文献   

10.
《Carbon》1987,25(2):265-271
Kinetic rate measurements of the hydrogen gasification of a graphiticed carbon black at 865°C and 500 psig hydrogen are reported for K2CO3 loadings of 0, 1, 5 and 10 wt. %. Potassium loss was measured during reaction; surface area and catalyst loading of residual samples were measured after experiment. A twentyfold increase in gasification rate at 50%–70% conversion is observed upon addition of 10 wt. % K2CO3. Specific reaction rate is approximately constant in the presence of 5% and 10% catalyst but decreases for the uncatalyzed sample. These results, as well as the results of experiments in which the carbon is first degassed, support the postulate that surface oxygen is the primary catalytic entity in the hydrogen gasification and that K2CO3 merely stabilizes and provides additional oxygen on the surface.  相似文献   

11.
Nano-sized silica/polysulfone (PSf) flat sheet asymmetric MMMs with high CO2 permeance for CO2/N2 separation were fabricated by dry/wet phase inversion method using N, N-dimethylacetamide (DMAc) and tetrahydrofuran (THF) as solvents and ethanol as additives. The results indicated that the addition of nano-silica on the polymer matrix resulted on reduced membrane performance due to void formation and particle agglomeration. Optimum membrane performance was obtained at the following fabrication parameters: 22 wt.% PSf, 31.8 wt.% DMAc, 31.8 wt.% THF, 14.4 wt.% ethanol, 20 s evaporation time, and 0 wt.% silica loading, with CO2/N2 selectivity of 15.6 and CO2 permeance of 14.2 GPU.  相似文献   

12.
A series of solid amine adsorbents were prepared by the template method with ion-exchange resin (D001) as the carrier and polyethyleneimine (PEI) as the modifier. The absorbents were characterized by energy disperse spectroscopy (EDS), scanning electron microscope (SEM), N2 adsorption–desorption, Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) techniques. The effects of PEI loading, adsorption temperature and influent velocities on CO2 adsorption capacity in a fixed-bed reactor were investigated. The results show that the solid amine adsorbent prepared by the template method had a better PEI dispersion, stability and CO2 adsorption capacity. The maximum CO2 adsorption capacity was 3.98 mmol·g?1 when PEI loading was 30%, the adsorption temperature was 65°C and the influent velocity was 40 mL·min?1. The CO2 adsorption capacity decreased only by 9.50% after 10 cycles of adsorption–desorption tests. The study of kinetics indicates that both chemical adsorption and physical adsorption occurred in the CO2 adsorption process. The CO2 adsorption process included fast breakthrough adsorption and gradually approaching equilibrium stage. The particle internal diffusion process was the control step for CO2 adsorption.  相似文献   

13.
A bubbling fluidized bed reactor was used to study CO2 capture from flue gas by using a potassium-based solid sorbent, sorbKX35 which was manufactured by the Korea Electric Power Research Institute. A dry sorbent, sorbKX35, consists of K2CO3 for absorption and supporters for mechanical strength. To increase initial CO2 removal, some amount of H2O was absorbed in the sorbent before injecting simulated flue gas. It was possible to achieve 100% CO2 removal for more than 10 minutes at 60°C and a residence time of 2 s with H2O pretreatment. When H2O pretreatment time was long enough to convert K2CO3 of sorbKX35 into K2CO3 · 1.5H2O, CO2 removal was excellent. The results obtained in this study can be used as basic data for designing and operating a large scale CO2 capture process with two fluidized bed reactors. This work was presented at the 6 th Korea-China Workshop on Clean Energy Technology held at Busan, Korea, July 4–7, 2006.  相似文献   

14.
BACKGROUND: An indirect solvent‐free synthetic approach for obtaining glycerol carbonate and glycidol from glycerol and CO2 through their more reactive and easily synthesizable derivatives 3‐chloro‐1,2‐propanediol (HAL) and potassium (hydrogen) carbonate has been studied. RESULTS: The reaction is fast with source of carbonation and temperature having a strong influence on the results. A yield of 80% glycerol carbonate together with a simultaneous substantial production of glycidol (0.56 mol mol?1 glycerol carbonate) are obtained using K2CO3 as the carbonation source at 80 °C, a reaction time of 30 min and a 3:1 HAL/K2CO3 molar ratio. A lower yield of glycerol carbonate (60%) is obtained from KHCO3 after 50 min with the other experimental conditions remaining unchanged. In this case, glycidol formation is zero or insignificant. Glycerol is also obtained in high yields, although in much lower amounts from KHCO3 (~0.59 mol mol?1 glycerol carbonate independent of operating conditions) than from K2CO3 (0.84–1.1 mol mol?1 glycerol carbonate, depending on experimental conditions). CONCLUSIONS: The proposed synthetic strategy overcomes the currently difficult direct reaction between glycerol and CO2, leading to the simultaneous synthesis of two valuable chemicals: glycerol carbonate and glycidol. However, glycerol is also obtained in substantial amounts thus decreasing the overall yield of the process. Thus, methods for preventing its formation must be developed for industrial feasibility. Copyright © 2010 Society of Chemical Industry  相似文献   

15.
《分离科学与技术》2012,47(16):2320-2330
In this research, continuous SAPO-34 membranes were synthesized via secondary growth method onto both α-Al2O3 and mullite supports at three levels of synthesis temperature: 185, 195, and 220°C for 24 h. The synthesized membranes were characterized using XRD and SEM analysis and single gas permeation experiments. It was found out that support material and synthesis temperature both have significant effects on the membrane performance. At higher synthesis temperature, SAPO-34 crystals grown over the mullite support become more uniform and smaller in size but those grown on the α-Al2O3 support become larger. Effect of synthesis temperature on single gas permeation properties of the synthesized SAPO-34 membranes was also studied. For the mullite supported membranes, the CH4 and CO2 permeances decrease as synthesis temperature increases; but in the case of the alumina supported membranes, by increasing synthesis temperature, CH4 and CO2 permeances first decrease up to 195°C and then increase up to 220°C. Even in equal membrane thicknesses, the mullite supported membrane shows lower gas permenaces. Increasing synthesis temperature decreases CO2/CH4 ideal selectivity for the α-Al2O3 supported membranes, while increases for the mullite supported membranes. Under optimum synthesis conditions, at room temperature and 2 bar feed pressure, the CO2 permeance through the α-Al2O3 and the mullite supported SAPO-34 membranes are 8.2 × 10?7 and 8.5 × 10?8 (mol/m2 · s · Pa), respectively, and CO2/CH4 ideal selectivities are 51 and 61, respectively.  相似文献   

16.
《分离科学与技术》2012,47(11):1606-1616
This paper reports on the properties of an MFI-type zeolite (silicalite-1) membrane synthesized on a novel tubular support with a 0.45 µm-pore size active layer consisting of zirconium and titanium oxides. Even though the membrane was synthesized by a pore plugging method, apart from penetrating into the support, the silicalite-1 crystals formed a 1.5 µm layer on top of the support. After the zeolite synthesis, the Si constituted more than 35% of the active layer of the support, which implies small size and close packing of the silicalite-1 crystals in the pores of the active layer.

Single gas permeation tests with N2 and CO2 revealed comparable N2 and CO2 permeances. On the other hand, CO2/N2 gas separation tests performed at different total feed pressures and feed compositions lead to CO2/N2 permselectivities as high as 26.0, with the corresponding CO2 permeance of 6 × 10?8 mol/m2 Pa s. The effects of changing the partial pressure gradient of CO2 across the membrane by means of varying the total feed pressure and the feed composition on the CO2 permeance and CO2/N2 permselectivity are discussed.  相似文献   

17.
The absorption of CO2 from a mixture of CO2/N2 gas was carried out using a flat-stirred vessel and the polytetrafluoroethylene hollow fiber contained aqueous 2-amino-2-methyl-1-propanol (AMP) solution. The reaction of CO2 with AMP was confirmed to be a second order reversible reaction with fast-reaction region. The mass transfer resistance in the membrane side obtained from the comparison of the measured absorption rates of CO2 in a hollow fiber contained liquid membrane with a flat-stirred vessel corresponded to about 90% of overall-mass-transfer resistance. The mass transfer coefficient of hollow fiber phase could be evaluated, which was independent of CO2 loading.  相似文献   

18.
Steam reforming (SR) and oxidative steam reforming (OSR) of ethanol were investigated over undoped and Cu, Co and Ca doped Ni/CeO2–ZrO2 catalyst in the temperature range of 400–650 °C. The nickel loading was kept fixed at 30 wt.% and the loading of Cu and Co was varied from 2 to 10 wt% whereas the Ca loading was varied from 5 to 15 wt.%. The catalysts were characterized by various techniques, such as surface area, temperature programmed reduction, X-Ray diffraction and H2 chemisorption. For Cu and Co doped catalyst, CuO and Co3O4 phases were detected at high loading whereas for Ca doped catalyst, no separate phase of CaO was found. The reducibility and the metal support interactions were different for doped catalysts and varied with the amount and nature of dopants. The hydrogen uptake, nickel dispersion and nickel surface area was reduced with the metal loading and for the Co loaded catalysts the dispersion of Ni and nickel surface area was very low. For Cu and Ca doped catalysts, the activity was increased significantly and the main products were H2, CO, CH4 and CO2. However, the Co doped catalysts showed poor activity and a relatively large amount of C2H4, C2H6, CH3CHO and CH3COCH3 were obtained. For SR, the maximum enhancement in catalytic activity was obtained with in the order of NCu5. For Cu–Ni catalysts, CH3CHO decomposition and reforming reaction was faster than ethanol dehydrogenation reaction. Addition of Cu and Ca enhanced the water gas shift (WGS) and acetaldehyde reforming reactions, as a result the selectivity to CO2 and H2 were increased and the selectivity to CH3CHO was reduced significantly. The maximum hydrogen selectivity was obtained for Catalyst N (93.4%) at 650 °C whereas nearly the same selectivity to hydrogen (89%) was obtained for NCa10 catalyst at 550 °C. In OSR, the catalytic activity was in the order N > NCu5 > NCa15 > NCo5. In the presence of oxygen, oxidation of ethanol was appreciable together with ethanol dehydrogenation. For SR reaction, the highest hydrogen yield was obtained on the undoped catalyst at 600 °C. However, with calcium doping the hydrogen yields are higher than the undoped catalyst in the temperature range of 400–550 °C.  相似文献   

19.
The effect of the regeneration temperature (150°, 250°, and 350°C) during multiple CO2 cyclic sorption-regeneration cycles of a K2CO3/Al2O3 solid sorbent in a bubbling fluidized bed reactor was evaluated in terms of the CO2 capture capacity and chemical composition of the solid sorbent. The CO2 capture capacity after regeneration at 150° and 250°C decreased with increasing cycle numbers, reaching approximately 57 and 78%, respectively, and 19.0 and 39.3%, respectively, of the original capacity after one and five regeneration cycles. This decline in the CO2 capture capacity was due to the accumulation of KHCO3 (at 150°C) and KAl(CO3)2(OH)2 (150° and 250°C) from their incomplete degradation back to the K2CO3/Al2O3 solid sorbent. When regenerated at 350°C, the CO2 capture capacity remained essentially constant in each cycle number because of complete desorption (no residual KHCO3 and KAl(CO3)2(OH)2). The formation mechanism of complex structure occurred similar to the one in a fixed bed reactor/thermogravimetric analyzer with lower regeneration temperature. The general operation conditions for K2CO3/Al2O3 solid sorbents are summarized.  相似文献   

20.
The effect of acetic acid on the corrosion behavior of X 65 and C 1018 carbon steel in vapor-water two-phase stratified flow (Vsg: 2 m/s; Vsl: 0.1 m/s) at 2 bars total pressure, 1.54 bars CO2 partial pressure, pH 5.5, and 80°C was studied in a low pressure-high temperature multiphase flow horizontal loop using electrochemical and mass loss techniques. The liquid phase is composed of 1% NaCl aqueous solution containing different concentrations of acetic acid (500 to 5000 ppm total acetic acid), and the gas phase is composed of CO2-acetic acid-water vapor mixture. The corrosion rates, on both the top and bottom of the line, increase with increase in acetic acid concentration, which was attributed to the contribution of hydrogen ions by the free acetic acid to the cathodic reaction. Partial coverage of the metal surface by FeCO3 on both the top and bottom of the line is reported to be responsible for the observed localized corrosion. Surface analysis investigated with SEM and XRD is reported.

A vapor-liquid equilibrium model was developed for the system studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号