首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PROCESS/MODEL MISMATCH COMPENSATION FOR MODEL-BASED CONTROLLERS   总被引:2,自引:0,他引:2  
Process model-based control algorithms that employ a process model directly in the controller, have been shown to produce good control performance and robust behaviour, despite process modelling errors. However, when the process/model mismatch is large, the closed-loop response, while still being better than responses obtained by conventional controllers, will be degraded. This paper presents a new approach to compensate for process/model mismatch errors, and is based upon the Generic Model Control (GMC) algorithm. This approach is applicable to both linear and nonlinear model-based algorithms. Simulation results are presented to illustrate the efficiency of the approach  相似文献   

2.
In terms of model predictive control (MPC) performance degradation caused by operational faults, in this article, a robust MPC strategy with active fault tolerance properties is proposed. The proposed strategy incorporates a fault supervision layer into the structure of conventional cost-contracting formulation-based robust MPC for the online update of the nominal controller model in the event of faults. The robust MPC is based on multiplant uncertainty, while the supervisory layer consists of a bank of unknown input observers and a decision-making algorithm. Simulation results in a nonlinear polymerization reactor subject to process faults demonstrate that the proposed approach offers superior performance compared to the conventional strategy.  相似文献   

3.
In this paper, a simple adaptive control strategy is suggested for temperature tracking control of batch processes. A nonlinear controller, which is in structure very simple and consists of a single parameter, is proposed. To enable this controller to control a batch process adaptively, a simple parameter tuning algorithm is derived based on the Lyapunov stability theorem. The proposed adaptive control scheme is directly operational, which does not depend on process model and the only a priori process information required is the system response direction. To demonstrate the effectiveness and applicability of the proposed scheme, illustrative examples are provided. Extensive simulation results reveal that the proposed adaptive control strategy appears to be a simple and effective approach to batch process control, which provides robust control despite the wide range of operating conditions and nonlinear dynamics of the system.  相似文献   

4.
An improved nonlinear adaptive switching control method is presented to relax the assumption on the higher order nonlinear terms of a class of discrete-time non-affine nonlinear systems. The proposed control strategy is composed of a linear adaptive controller, a neural network (NN) based nonlinear adaptive controller and a switching mechanism. An incremental model is derived to represent the considered system and an improved robust adaptive law is chosen to update the parameters of the linear adaptive controller. A new performance criterion of the switching mechanism is designed to select the proper controller. Using this control scheme, all the signals in the system are proved to be bounded. Numerical examples verify the effectiveness of the proposed algorithm.  相似文献   

5.
Advanced model-based control strategies,e.g.,model predictive control,can offer superior control of key process variables for multiple-input multiple-output systems.The quality of the system model is critical to controller performance and should adequately describe the process dynamics across its operating range while remaining amenable to fast optimization.This work articulates an integrated system identification procedure for deriving black-box nonlinear continuous-time multiple-input multiple-output system models for nonlinear model predictive control.To showcase this approach,five candidate models for polynomial and interaction features of both output and manipulated variables were trained on simulated data and integrated into a nonlinear model predictive controller for a highly nonlinear continuous stirred tank reactor system.This procedure successfully identified system models that enabled effective control in both servo and regulator problems across wider operating ranges.These controllers also had reasonable per-iteration times of ca.0.1 s.This demonstration of how such system models could be identified for nonlinear model predictive control without prior knowledge of system dynamics opens further possibilities for direct data-driven methodologies for model-based control which,in the face of process uncertainties or modelling limitations,allow rapid and stable control over wider operating ranges.  相似文献   

6.
Two adaptive type-2 fuzzy logic controllers with minimum number of rules are developed and compared by simulation for control of a bioreactor in which aerobic alcoholic fermentation for the growth of Saccharomyces cerevisiae takes place. The bioreactor model is characterized by nonlinearity and parameter uncertainty. The first adaptive fuzzy controller is a type-2 fuzzy-neuro-predictive controller (T2FNPC) that combines the capability of type-2 fuzzy logic to handle uncertainties, with the ability of predictive control to predict future plant performance making use of a neural network model of the nonlinear system. The second adaptive fuzzy controller is instead a self-tuning type-2 PI controller, where the output scaling factor is adjusted online by fuzzy rules according to the current trend of the controlled process. The performance of a type-2 fuzzy logic controller with 49 rules is used as reference.  相似文献   

7.
The paper presents a novel control approach for crystallization processes, which can be used for designing the shape of the crystal size distribution to robustly achieve desired product properties. The approach is based on a robust optimal control scheme, which takes parametric uncertainties into account to provide decreased batch-to-batch variability of the shape of the crystal size distribution. Both open-loop and closed-loop robust control schemes are evaluated. The open-loop approach is based on a robust end-point nonlinear model predictive control (NMPC) scheme which is implemented in a hierarchical structure. On the lower level a supersaturation control approach is used that drives the system in the phase diagram according to a concentration versus temperature trajectory. On the higher level a robust model-based optimization algorithm adapts the setpoint of the supersaturation controller to counteract the effects of changing operating conditions. The process is modelled using the population balance equation (PBE), which is solved using a novel efficient approach that combines the quadrature method of moment (QMOM) and method of characteristics (MOC). The proposed robust model based control approach is corroborated for the case of various desired shapes of the target distribution.  相似文献   

8.
In this article, a nonlinear adaptive control strategy is proposed for a multicomponent batch distillation column. The hybrid control scheme consists of a generic model controller (GMC) and a nonlinear adaptive state estimator (ASE). In the first part of the study, an adaptive observer is designed aiming to estimate the partially known parameters based on the measured compositions in the presence of process/predictor mismatch. The open-loop dynamic behavior of the developed ASE estimator is investigated under initialization error, disturbance, and uncertain parameters. In the subsequent part, the adaptive GMC-ASE controller (GMC control structure in conjunction with ASE estimator) has been synthesized for the example distillation column. A simulation-based comparative study has been conducted between the derived nonlinear GMC-ASE control algorithm and a gain-scheduled proportional integral (GSPI) law in terms of constant composition control. The proposed adaptive control scheme is shown to be quite promising due to the exponential error convergence capability of the ASE estimator in addition to the high-quality performance of the GMC controller.  相似文献   

9.
A multistep model predictive control (MPC) strategy based on dynamically recurrent radial basis function networks (RBFNs) is proposed for single-input single-output (SISO) control of uncertain nonlinear processes. The control system consists of two automatically configured RBFNs, a trained network representing the plant model and a network with on-line learning to function as controller. The automatic configuration and learning of the networks is carried out by using a hierarchically self-organizing learning algorithm. This control strategy is structurally simple and computationally efficient since a single output node of each RBFN is configured to provide multistep predictions for plant output and controller. The performance of the proposed RBFNMPC strategy is evaluated by applying to two unstable nonlinear chemical processes, a chemical reactor and a biochemical reactor, and also a stable polymerization reactor. Further, the results of the RBFNMPC is compared with similar RBFN model based control strategies and also with well tuned PID/PI controller. The results show the better performance of the proposed RBFNMPC for the control of open-loop unstable nonlinear processes that exhibit multiple steady-state behavior.  相似文献   

10.
针对一类不确定非线性系统,结合自适应鲁棒控制和迭代学习控制方法,提出了自适应鲁棒迭代学习混合控制策略。学习控制策略用于处理周期性不确定,自适应鲁棒控制策略用于处理具有未知上界的非周期性不确定。所提出的控制方案保证跟踪误差在有限的迭代步骤内收敛到任意指定的误差区域。最后将此控制策略应用于陶瓷机械手的控制,仿真结果表明此方法的有效性。  相似文献   

11.
尚林源  田学民  史亚杰 《化工学报》2013,64(11):4121-4127
由于模型预测控制器对模型失配等不确定因素具有较强的鲁棒性,因此现有的多步预测误差方法不能及时显著地检测到由模型失配导致的MPC控制器性能潜能的变化。针对上述问题,提出一种改进的多步预测误差方法和实时性能监控策略。考虑到MPC控制器的模型预测残差能有效反映模型失配等信息,利用预测残差对现有多步预测误差方法进行改进,改进的方法能够更好地检测由模型失配引起的MPC控制器性能潜能的改变。在连续搅拌槽加热器(continuous stirred tank heater,CSTH)系统上的仿真实验验证了该方法的可行性与有效性。  相似文献   

12.
This paper presents a neural network approach to adaptive control through pattern recognition techniques. Two interconnected backpropagation networks are trained to translate error patterns resulting from sustained set point changes into predictions of mismatch between current internal model parameters, model gain and model time constant, and those which restore desired performance. The network predictions are then used to update a model based PI controller. The strategy is demonstrated on two simulations and a pilot scale process which are undergoing severe changes in model gain and time constant. The strategy compares favorably against a more traditional rule based pattern recognition approach.  相似文献   

13.
Hydraulic fracturing has gained increasing attention as it allows the constrained natural gas and crude oil to flow out of low-permeability shale formations and significantly increase production. Perilous operating states of extremely high pressure also raise some safety concerns, requiring us to formulate an appropriate dynamic model, and provide a careful engineering control to ensure safe operating conditions. Moreover, uncertainties due to spatially varying rock properties increase the difficulties in control of the fracturing process. In this work, we formulate a first-principles model by considering the fracture evolution, mass transport of substances in the slurry, changing fluid properties, and the monitored operating pressure on the ground level. Next, we implement nonlinear model predictive control (NMPC) to control the process under a set of final requirements and process constraints. Our results show that the performance of standard NMPC degrades when the rock uncertainty causes the parameter mismatch between the process and the predictive model in the controller. With standard NMPC, designed with a nominal model, the process fails to meet the terminal requirements of fracture geometry, and pressure is violated in one of the parameter mismatch cases. Therefore, we resort to multistage NMPC, which considers uncertainty evolution in a scenario tree with separate control sequences to address constraint violations. We demonstrate that multistage NMPC presents good performance by showing constraint satisfaction whether the uncertain rock parameter realization is time-invariant or time-variant. We also simulate the process with multistage NMPC including different numbers of scenarios and compare their control performance. Our investigation demonstrates that multistage NMPC effectively manages parametric uncertainties attributed to non-homogeneous rock formation, and provides a promising control strategy for the hydraulic fracturing process.  相似文献   

14.
A milk pasteurization process, a nonlinear process and multivariable interacting system, is difficult to control by the conventional on–off controllers since the on–off controller can handled the temperature profiles for milk and water oscillating over the plant requirements. The multi-variable control approach with model predictive control (MPC) is proposed in this study. The proposed algorithm was tested for control of a milk pasteurization process in four cases of simulation such as set point tracking, model mismatch, difference control and prediction horizons, and time sample. The results for the proposed algorithm show the well performance in keeping both the milk and water temperatures at the desired set points without any oscillation and overshoot and giving less drastic control action compared to the cascade generic model control (GMC) strategy.  相似文献   

15.
Trajectory tracking or rejecting persistent disturbances with digital controllers in nonlinear processes is a class of problems where classical control methods breakdown since it is very difficult to describe the dynamic behavior over the entire trajectory. In this paper, a model-based robust control scheme is proposed as a potential solution approach for these systems. The proposed control algorithm is a robust error feedback controller that allows us to track predetermined operation profiles while attenuating the disturbances and maintaining the stability conditions of the nonlinear processes. Various numerical simulation examples demonstrate the effectiveness of this robust scheme. Two examples deal with effective trajectory tracking in chemical reactors over a wide range of operating conditions. The third example analyses the attenuation of periodic load in a biological reactor. All examples illustrate the ability of the robust control scheme to provide good control in the face of parameter uncertainties and load disturbances.  相似文献   

16.
针对执行器饱和受限锅炉燃烧系统,提出一种鲁棒预测控制方法。首先,建立燃烧过程的线性参数变化系统模型,将执行器饱和受限转变成凸包形式描述;进而,设计执行器饱和受限的鲁棒预测控制器;最后,以某电站300MW机组锅炉控制为实例,对所提出的方法进行验证。结果表明:该方法可以在满足执行器饱和受限约束的同时获得满意的性能。  相似文献   

17.
The two-point composition control problem of binary distillation columns is addressed. First, the exact model-based inventory control problem is studied, yielding the underlying solvability conditions with physical meaning, the limiting behavior attainable with any controller, and its equivalence with nonlinear geometric and MPC controllers. This control behavior is recovered via a measurement-driven linear controller made of a pair of decoupled PI loops and a static interaction compensator. A closed-loop dynamics study formally shows the recovery feature and provides stability conditions coupled with conventional-like tuning rules. The controller implementation needs only four static parameters that have direct physical meaning and can be estimated from plant data and/or simulation packages. The proposed technique is tested with two representative examples in the presence of actuator errors, measurement delays, and load disturbances, matching or improving the behavior obtained with previous schemes.  相似文献   

18.
This article presents comparative analysis between the classical PI (proportional-integral control) and MPC (model predictive control) techniques for a drying process on spouted beds. The on-line experimental setups were carried out in a laboratory-scale plant of a spouted bed dryer. The main objective was to optimize the plant operation by searching for the best control structure to be used in future scale enlargement. The major drawbacks encountered in this kind of system were high interactivity among variables, a malfunction as a result of calculated variables out of the operational window, and modeling mismatch. Despite the robustness of the operational PI, the control actions of this strategy did not overcome the variable interactions. The DMC (dynamic matrix control) and the QDMC (quadratic dynamic matrix control) algorithms performed satisfactorily over the major drawbacks. Special attention was given to the latter algorithm due to its ability to hold the variables under constrained oscillations. However, the best results were found for the adaptive GPC (generalized predictive control) algorithm whose actions prevailed over the modeling mismatch due to the strong nonlinear behavior intrinsic to the process. The main goal of the present work is to describe a procedure that can be standardized for other types of dryers and different scales. This is especially the case for the adaptive GPC, whose control structure is independent of the dryer nature and scale and whose implementation does not require previous identification procedures (self-tuning) and/or structural changes.  相似文献   

19.
单级倒立摆的自适应模糊控制方法   总被引:1,自引:1,他引:0  
倒立摆系统是一个复杂的、不稳定的非线性系统,为了使其具有更好的适应性和鲁棒稳定性,我们采用模糊控制器与监督控制器相结合的方法来对其进行控制。通过MATLAB环境下的仿真并对仿真结果进行分析,验证了此方法按照预定的要求精确、稳定、快速地控制倒立摆系统,实现既定目标的性能。  相似文献   

20.
In this paper, an on-line optimal control methodology is developed for the optimal quality control of a seeded batch cooling crystallizer process. An extended Kalman filter is successfully implemented to predict seven unmeasured state variables based on three measurements in the batch process. A PI controller is used in a feedback control system to implement the optimal path. It is found that the PI controller can ensure tracking of the optimal path. The simulation results show that on-line optimal control strategy leads to a substantial improvement of the end product quality expressed in terms of the mean size and the width of the distribution. The effects of the plant/model mismatch and disturbances are also tested and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号