首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The attenuating effect of reaction-medium water (feed and/or reaction product) on the kinetics of the steps of methanol transformation into hydrocarbons on a HZSM-5 zeolite catalyst was studied by means of a kinetic model. In this model, the effect of water was quantified in all the steps of the kinetic scheme by means of a kinetic parameter, which is constant with temperature under the conditions of the MTG process. At low temperature, under conditions in which only methanol dehydration occurs, the kinetics of this reaction is attenuated by the presence of water, and the coefficient that quantifies the attenuation decreases as temperature is increased. In addition to considering the effect of water content in the reaction medium, another innovation of the kinetic model proposed, compared to those proposed in the literature consisting of lumps, is the fact that the higher reactivity of dimethyl ether over methanol is taken into account. A step of cracking of gasoline lump hydrocarbons to produce light olefins (ethene and propene) was also taken into account. The kinetic model proposed was verified by using the results obtained in an integral isothermal fixed bed reactor, in the 573-723 K range, for an ample range of space time values. The results revealed that the effect of water is due to its adsorption on the active sites by competition with the intermediate compounds of the kinetic scheme.  相似文献   

2.
A kinetic model for simulation of the MTO process over SAPO-18 catalyst in a wide range of operating conditions has been proposed. The kinetic model predicts the experimental evolution of reaction products with time on stream, which follows three consecutive periods: initiation (where olefin production increases), a period of maximum olefin production and a period in which this production decreases. The kinetic scheme takes into account these three steps that evolve with time on stream: formation of active intermediate compounds, an step where olefins are formed by reaction of oxygenates (methanol/DME) with these intermediates and deactivation of intermediates by degradation to coke. The presence of water in the reaction medium attenuates the reaction rate of these steps. Discrimination of kinetic equations and calculation of the parameters of best fit have been carried out by solving the mass conservation equations of the individual components of the kinetic scheme together with the kinetic equation for deactivation and taking into account the effect of water on the kinetics of each step.  相似文献   

3.
低温液相甲醇合成反应动力学模型与参数估计   总被引:2,自引:0,他引:2       下载免费PDF全文
由低温液相甲醇合成的反应机理出发 ,考虑了均相和多相催化剂的不同作用及不同的吸附方式 ,导出了两步法低温液相甲醇合成的动力学模型 .结合搅拌釜中测得的动力学数据 ,对动力学模型进行了筛选和参数回归 .结果表明氢气为分子吸附 ,反应为双位吸附反应 ,甲醇脱附为反应控制步骤的反应动力学模型能较好地拟合实验数据 .由此得到了低温液相甲醇合成反应动力学模型方程 ,模型满足F检验 ,且参数符合各自的物理意义 .该动力学模型由于是对两步反应综合起来进行动力学分析 ,因而结果可在反应器数学模型中应用  相似文献   

4.
A kinetic study for the one-step conversion of synthesis gas to gasoline on a ZnO–Cr2O3–ZSM-5 catalyst is described. On this catalyst, three reactions are involved in the overall transformation of synthesis gas: the methanol synthesis, the conversion of methanol to hydrocarbons and the water–gas shift reaction. Under the operating conditions selected for the study, it was found that the water–gas shift was at equilibrium and the methanol was completely converted to hydrocarbons. Consequently, it was postulated that the kinetics of the limiting reaction step, the methanol synthesis on the ZnO–Cr2O3 component, was the one that controls the overall reaction rate. Three kinetic model equations describing the rate of synthesis gas conversion on the bifunctional catalyst, were considered to fit the data of the experimental runs performed in a Berty well-mixed reactor. Those equations were derived under very special conditions where the methanol decomposition term could be neglected. It was also observed that in the kinetic equations a term involving the fugacity of CO2 was required to predict the rate properly. The catalyst deactivation was also taken into account in the analysis.  相似文献   

5.
The joint transformation of methanol and n‐butane fed into a fixed‐bed reactor on a HZSM‐5 zeolite catalyst has been studied under energy neutral conditions (methanol/n‐butane molar ratio of 3/1). The kinetic scheme of lumps proposed integrates the reaction steps corresponding to the individual reactions (cracking of n‐butane and MTO process at high‐temperature) and takes into account the synergies between the steps of both reactions. The deactivation by coke deposition has been quantified by an expression dependent on the concentration of the components in the reaction medium, which is evidence that oxygenates are the main coke precursors. The concentration of the components in the reaction medium (methanol, dimethyl ether, n‐butane, C2? C4 paraffins, C2? C4 olefins, C5? C10 lump, and methane) is satisfactorily calculated in a wide range of conditions (between 400 and 550°C, up to 9.5 (g of catalyst) h (mol CH2)?1 and with a time on stream of 5 h) by combining the equation of deactivation with the kinetic model of the main integrated process. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

6.
The reaction was carried out in fixed bed reactor. The effect of process variables on the activity of oxalic acid treated 0.5 wt% ZnO/7 wt% CuO/HZSM5 catalyst for the conversion of methanol to gasoline range hydrocarbons was studied. The catalyst was prepared by incipient wetness impregnation method. After impregnation the catalyst was treated with oxalic acid. The validity of kinetic model proposed for the methanol to gasoline range hydrocarbon process at zero time on stream was studied, from the experimental results obtained in a wide range of operating conditions. The kinetic parameters for various models were calculated by solving the equation of mass conservation in the reactor for the lumps of the kinetic models. The kinetic model fitted well for simulating the operation in the fixed bed reactor in the range of 635 to 673 K, with regression coefficient (R2) higher than 0.96.  相似文献   

7.
The aim of the present contribution was to develop a detailed kinetic analysis of the oxidative dehydrogenation (ODH) reaction of methanol to formaldehyde on a nano-structured supported vanadium oxide catalyst, selected in a preliminary screening. The chosen vanadium catalyst, supported on TiO2/SiO2, has been prepared by grafting vanadyl alkoxide, dissolved in dioxane, and characterized by BET, XRD, Raman, XPS and SEM. An exhaustive set of experimental runs has been conducted in an isothermal packed bed tubular reactor by investigating several operative conditions, such as: temperature, contact time, methanol/oxygen feed molar ratio and water feed concentration. Depending on the operative conditions adopted, the main products observed were formaldehyde and dimethoxymethane while lower amounts of methyl formate and CO2 were also found. At low contact time, the main reaction product was dimethoxymethane which was then converted into formaldehyde through the reverse equilibrium reaction with water. As a confirmation of this observation, a peculiar behaviour was detected consisting in an increase of selectivity to formaldehyde by increasing methanol conversion. The obtained experimental data of methanol conversion and selectivity towards products were modelled by means of an integral reactor model and the related kinetic parameters were determined by non-linear regression analysis. The adopted reaction rate expressions were of the Mars van Krevelen–Langmuir Hinshelwood type and a good agreement was found between the model theoretical prediction and the experimental data. A reaction mechanism and a detailed reaction scheme (rake-type) were proposed for methanol ODH on a nano-structured catalyst that were able to interpret correctly the collected experimental observations.  相似文献   

8.
基于汽油烯烃转化的催化裂化动力学模型   总被引:7,自引:2,他引:5       下载免费PDF全文
邹圣武  侯栓弟  龙军  周健  孙铁栋  张占柱 《化工学报》2004,55(11):1793-1798
以催化裂化反应机理为基础,把FCC原料及产品按馏程和化学组成进行集总划分.考虑氢转移、芳构化等二次反应,通过对反应网络的合理简化,提出了一种分子水平的动力学模型.通过参数估计求取18个动力学速度常数,建立集总动力学模型以预测汽油的化学结构组成.研究结果表明:该模型能较好预测不同条件下的产率分布,而且可以预测汽油组成分布,有助于降低汽油烯烃含量的研究.  相似文献   

9.
A transient kinetic model was developed for the CO oxidation by O2 over a Pt/Rh/CeO2/γ-Al2O3 three-way catalyst. The experiments which were modelled consisted of periodically switching between a feed stream containing 0.5 mol% CO in helium and a feed stream containing 0.5 mol% O2 in helium, with a frequency from 0.1 to 0.25 Hz, in the temperature range 393–433 K. These temperatures are representative for cold start conditions. The transient experiments yield information about the reaction mechanism. A transient kinetic model based on elementary reaction steps was developed which describes the experimental data in the above mentioned range of experimental conditions adequately. The kinetic model consists of two monofunctional and one bifunctional contribution. The first monofunctional reaction path comprises competitive adsorption of CO and O2 on the noble metal surface followed by a surface reaction. The second monofunctional reaction path consists of CO adsorption on an oxygen atom adsorbed on the noble metal surface, followed by a reaction to CO2. The bifunctional reaction path involves a reaction between CO adsorbed on the noble metal surface and oxygen from ceria at the noble metal/ceria interface. Also, reversible adsorption of carbon dioxide on the support is taken into account. The kinetic parameters, i.e. preexponential factors and activation energies for the different elementary reaction steps, and the oxygen storage capacity were estimated using multi-response non-linear regression analysis of the oxygen, carbon monoxide and carbon dioxide outlet concentrations.  相似文献   

10.
In the absence of emulsifying agents, vinyl acetate polymerization in aqueous media was carried out at 50°C over a wide range of initial initiator and monomer concentrations to clarify the effect of reaction conditions on the kinetic behavior of the polymerization system. It was shown that the rate of polymerization was proportional to reaction time and initiator concentration and independent of the number of polymer particles present. The rate could also be successfully explained by the Smith and Ewart theory for emulsion polymerization when the dissolved monomer in water and the Trommsdorff effect were taken into consideration. A set of equations which could account for the effect of dissolved monomer in water on the rate of polymerization is proposed.  相似文献   

11.
The reaction of rapeseed oil with methanol catalyzed by KOH is described by a model consisting of two sequences of consecutive competitive reactions. The first sequence expresses the methanolysis of rapeseed oil to methyl esters (biodiesel) whereas the second sequence describes the always present side reaction‐saponification of glycerides and methyl esters by KOH. The proposed chemical model is described (after rational simplifications) by a system of differential kinetic equations which are solved numerically by two independent computing methods. The thus obtained theoretical kinetic and equilibrium results are compared numerically and/or graphically with the experimental parameters. The latter were obtained by the determination of the relevant components in the actual reaction mixture by analytical methods. According to the experimental results, the proposed reaction scheme is fulfilled with the probability of ca. 78%. The optimal average rate constants and equilibrium constants of individual reaction steps of the discussed scheme are introduced. The limitations of the proposed reaction model are discussed.  相似文献   

12.
In this paper, a new kinetic model for methanol to olefin process (MTO) over SAPO-34 catalyst was developed based on data obtained from a micro catalytic reactor using appropriate reaction network. The reaction rate equation has been introduced with consideration of reaction mechanism and the parameters were optimized on the experimental data by genetic algorithm. Comparing the experimental and predicted data showed that the predicted values from the presented model are well fitted to the experimental data. Using this kinetic model, the effect of most important operating conditions such as temperature, pressure, inlet water to methanol molar ratio and methanol space–time on the product distribution, has been examined. Finally, the optimal operating conditions for maximum production of the ethylene and the propylene were introduced.  相似文献   

13.
采用固定床反应器,在消除内外扩散影响的基础上,在反应温度480~560℃、甲苯甲醇总质量进料空速2 h-1、甲苯甲醇物质的量之比为1~6、水与甲苯物质的量之比为2~6和氢气与甲苯物质的量之比为2~8的条件下,研究了在自制沸石分子筛催化剂上甲苯甲醇烷基化反应的本征动力学,建立了包括甲苯甲醇烷基化制对二甲苯、二甲苯间异构化、二甲苯深度烷基化生成三甲苯和甲醇生成烯烃等7个反应的完整反应网络。采用非线性优化方法进行参数估算,并对模型的适用性进行了误差分析和统计检验。结果表明,甲醇生成烯烃反应的加入使模型能较好地反映出甲苯甲醇物质的量比对反应结果的影响,甲苯甲醇烷基化制对二甲苯的表观活化能为76.66 k J/mol,通过误差分析和统计检验表明,动力学模型是适用的。  相似文献   

14.
A kinetic model for the oxidation of phenol in high-pressure water has been developed and compared with experimental data taken from literature. The model assumes a chain reaction propagated by O? and OH?. Production of the hydroxyl radical by the reaction of atomic oxygen and water induces a chain-branching effect, which is particularly effective at low temperatures and high pressures. The proposed model gives a fair correlation of the experimental data in the whole examined temperature and pressure range and appears significantly better than a simpler, power-law kinetic model. The relibility of the model is strengthened by the consideration of values obtained for the kinetic parameters (in particular for the activation energies) which compare well with the literature.  相似文献   

15.
Autoxidation of β-carotene was studied experimentally using n-decane as a solvent under various reaction conditions of temperature and dissolved oxygen concentration A novel kinetic model was proposed on the basis of an autocatalytic free-radical chain reaction mechanism. A secondary initiation reaction by decomposition of hydroperoxide and reactions concerned with a β-carotene-derived C-centered radical in propagation and termination processes were taken into consideration in the model. There were four unknown kinetic constants, and the constants were estimated by fitting the model with the experimental data. The fitted results are in good agreement with the experimental data in all stages of the kinetics of autoxidation and over a wide range of oxygen concentrations. The model described not only the appearance of the induction stage but also the effect of the oxygen concentration on the autoxidation rate. In addition, the model predicted the behavior of autoxidation in another solvent at low temperature that had been reported by other researchers.  相似文献   

16.
王峥  许锋  罗雄麟 《化工学报》1951,73(10):4551-4564
在乙炔加氢反应器的实际生产运行过程中,乙炔加氢反应大部分在第一床层,加氢反应放出的大量热量使得床层内温度高于最佳反应温度范围,致使乙烯选择性降低,乙烯产量下降,而在进行全周期操作优化时并未考虑到此问题。因此,首先考虑温度对绿油累积的影响,修正了催化剂失活动力学方程;其次,为保证反应器各床层内温度都在最佳反应温度范围,从化学反应工程理论和实际生产过程中的安全性两个角度出发,给出两种反应器各床层乙炔转化率分配方案;最后,在常规全周期操作优化模型中添加乙炔转化率约束,建立全周期乙炔转化率分配操作优化模型,并对两种乙炔转化率分配方案进行全周期操作优化。优化结果表明,两种乙炔转化率分配方案操作优化的乙烯产量要远远高于常规操作优化,且乙炔转化率方案为33∶33∶33时,乙烯产量最高,而考虑实际生产过程中的安全性,乙炔转化率分配方案为43∶47∶10时具有更好的效果。  相似文献   

17.
王峥  许锋  罗雄麟 《化工学报》2022,73(10):4551-4564
在乙炔加氢反应器的实际生产运行过程中,乙炔加氢反应大部分在第一床层,加氢反应放出的大量热量使得床层内温度高于最佳反应温度范围,致使乙烯选择性降低,乙烯产量下降,而在进行全周期操作优化时并未考虑到此问题。因此,首先考虑温度对绿油累积的影响,修正了催化剂失活动力学方程;其次,为保证反应器各床层内温度都在最佳反应温度范围,从化学反应工程理论和实际生产过程中的安全性两个角度出发,给出两种反应器各床层乙炔转化率分配方案;最后,在常规全周期操作优化模型中添加乙炔转化率约束,建立全周期乙炔转化率分配操作优化模型,并对两种乙炔转化率分配方案进行全周期操作优化。优化结果表明,两种乙炔转化率分配方案操作优化的乙烯产量要远远高于常规操作优化,且乙炔转化率方案为33∶33∶33时,乙烯产量最高,而考虑实际生产过程中的安全性,乙炔转化率分配方案为43∶47∶10时具有更好的效果。  相似文献   

18.
The kinetics of carbon monoxide and propylene oxidation as well as nitrous oxide reduction on a Pd–Rh catalyst were determined with synthetic gas mixtures between 500 and 700 K. The overall reaction rate expression was constructed from elementary reaction steps and the kinetic parameters were determined from the experiments. A transient mathematical model has been developed to simulate automobile exhaust gas conversion based on the kinetics model equations. A comparison of simulated results with engine experiments proved to be successful. Results indicate that the reaction mechanisms proposed in this study are capable to describe the behavior of automotive exhaust gas converters, if mutual interactions of gaseous components and surface species are taken into account via elementary kinetic steps.  相似文献   

19.
In this paper, the adsorption equilibrium constants, dispersion coefficients, and kinetic parameters were obtained for the liquid phase reversible reaction of methanol with acetic acid catalyzed by Amberlyst 15. The adsorption and kinetic parameters are determined corresponding to two different mobile phases, methanol and water. Such parameters are required for three different applications of the model reaction: namely, synthesis of methyl acetate, removal of dilute acetic acid from wastewater, and hydrolysis of methyl acetate. Experiments were conducted in a packed bed reactor in the temperature range 313–323 K using a rectangular pulse input. A mathematical model for a quasi-homogeneous kinetics was developed. The adsorption and kinetic parameters together with their dependence on temperature were determined by tuning the simulation results to fit the experimentally measured breakthrough curves of acetic acid, water (or methanol) and methyl acetate using a state-of-the-art optimization technique, the genetic algorithm. The mathematical model was further validated using the tuned parameters to predict experimental results at different feed concentrations and flow rates. The kinetics reported in this study was obtained under conditions free of both external and internal mass transfer resistance. The computed parameters were found to predict experimental elution profiles for both batch and plug flow reactors reasonably well.  相似文献   

20.
The kinetics and thermodynamics of ester hydrolysis were studied experimentally in a laboratory-scale batch reactor by using ethyl formate as the model molecule. The effects of the reaction conditions, such as temperature, excess water, complexing agent and initial acid charge upon the ester hydrolysis process were investigated and a kinetic model was developed for the system. Autocatalytic kinetics was observed experimentally, which was due to the carboxylic acid formed during the reaction. The reaction rate was further enhanced and the equilibrium was shifted to the product side by adding a complexing agent into the reaction mixture. A mathematical model comprising the mass balances and rate equations were developed for the system by assuming quasi-equilibrium hypothesis for the reaction involving the complexing agent. A robust calculation scheme was developed for the estimation of the kinetic and thermodynamic parameters from experimental data. The proposed model was able to predict the experimental results satisfactorily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号