首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《分离科学与技术》2012,47(3):370-379
This study uses a waste iron oxide material (BT3), which is a by-product of the fluidized-bed Fenton reaction (FBR–Fenton), for the treatment of a fluoride (F?) solution. The purpose of this study is to investigate a low-cost sorbent as a replacement for the current costly methods of removing fluoride from wastewater. X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) are used to characterize the BT3. Contact time, F? concentration (from 0.75 to 6 mmol L?1), and temperature (from 303 to 323 K) are used as operation parameters to treat the fluoride. The highest F? adsorption capacity of the BT3 adsorbent was determined to be 1.17 mmol g?1 (22.2 mg g?1) for a 6 mmol L?1 initial F? concentration at pH 3.9 ± 0.2 and 303 ± 1 K. Adsorption data were well described by the Langmuir model, and the thermodynamic constants of the adsorption process, ΔG°, ΔH°, and ΔS°, were evaluated as ?1.63 kJ mol?1 (at 303 K), ?1.75 kJ mol?1, and ?52.4 J mol?1 K?1, respectively. Additionally, a pseudo-second-order rate model was adopted to describe the kinetics of adsorption. BT3 could be regenerated with NaOH, and the regeneration efficiency reached 95.1% when the concentration of NaOH was 0.05 mol L?1.  相似文献   

2.
An Algerian montmorillonite was modified with two organic surfactants, methyltriphenyl phosphonium bromide and n-hexyltriphenyl phosphonium bromide. The solids obtained were used as adsorbents to remove Orange II, an anionic dye from aqueous solutions. Batch experiments were conducted to study the effects of temperature (20–60°C), initial concentration of adsorbate (50–150 mg L?1) and pH of solution 6.5 on dye adsorption. Due to their organophilic nature, exchanged montmorillonites were able to adsorb Orange II at a very high level. Adsorption of Orange II for B-NHTPB and B-MTPB at different pH show that the adsorption capacity clearly decreases with an increase in pH of the initial solution from 2 to 8, this decrease being dramatic for pH > 8. This may be due to hydrophobic interactions of the organic dye with both phosphonium molecules and the remaining non-covered portion of siloxane surface. The kinetics of the adsorption was discussed on the basis of three kinetic models, i.e., the pseudo-first-order, the pseudo-second-order, and the intraparticle diffusion models. Equilibrium is reached after 30 min and 60 min for B-MTPB and B-NHTPB, respectively; the pseudo-second-order kinetic model described very well the adsorption of Orange II on modified bentonites. The non-linear Langmuir model provided the best correlation of experimental data, maximum adsorption of Orange II is 53.78 mg g?1 for B-NHTPB and 33.79 mg g?1 for B-MTPB. The thermodynamic parameters, such as free energy of adsorption (ΔG°), enthalpy change (ΔH°), and entropy change (ΔS°) were also determined and evaluated. From thermodynamic studies, it was deduced that the adsorption was spontaneous and exothermic.  相似文献   

3.
BACKGROUND: The removal of heavy metals using adsorption techniques with low cost biosorbents is being extensively investigated. The improved adsorption is essentially due to the pores present in the adsorbent. One way of improving the porosity of the material is by irradiation of the precursor using microwaves. In the present study, the adsorption characteristics of nickel onto microwave‐irradiated rice husks were studied and the process variables were optimized through response surface methodology (RSM). RESULT: The adsorption of nickel onto microwave‐irradiated rice husk (MIRH) was found to be better than that of the raw rice husk (RRH). The kinetics of the adsorption of Ni(II) from aqueous solution onto MIRH was found to follow a pseudo‐second‐order model. Thermodynamic parameters such as standard Gibbs free energy (ΔG°), standard enthalpy (ΔH°), and standard entropy (ΔS°) were also evaluated. The thermodynamics of Ni(II) adsorption onto MIRH indicates that it is spontaneous and endothermic in nature. The response surface methodology (RSM) was employed to optimize the design parameters for the present process. CONCLUSION: Microwave‐irradiated rice husk was found to be a suitable adsorbent for the removal of nickel(II) ions from aqueous solutions. The adsorption capacity of the rice husk was found to be 1.17 mg g?1. The optimized parameters for the current process were found as follows: adsorbent loading 2.8 g (100 mL)?1; Initial adsorbate concentration 6 mg L?1; adsorption time 210 min.; and adsorption temperature 35 °C. Copyright © 2008 Society of Chemical Industry  相似文献   

4.
In this study, a novel selective Au(III) chelating surface ion imprinted fibers based on phenyl thiosemicarbazide modified natural cotton (Au‐C‐PTS) has been synthesized, and applied for selective removal of Au(III) from aqueous solutions. Batch adsorption experiments were performed with various parameters, such as contact time, pH, initial Au(III) concentration, and temperature. The kinetic studies revealed that the adsorption process could be described by pseudo‐second‐order kinetic model, while the adsorption data correlated well with the Langmuir and Freundlich models. The maximum adsorption capacities calculated from the Langmuir equation are 140 ± 1 mg g?1 and 72 ± 1 mg g?1 at pH 5 for both Au‐C‐PTS and NI‐C‐PTS, respectively. The estimated thermodynamic parameters (Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy change (ΔS°)) indicated the spontaneity and exothermic nature of the adsorption process. Furthermore, the selectivity study revealed that the ion imprinted fibers was highly selective to Au(III) compared with Cu(II), Cd(II), Hg(II), and Fe(III). The adsorbent was successfully regenerated with a 0.1M HNO3 solution. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40769.  相似文献   

5.
《分离科学与技术》2012,47(10):1456-1462
The biosorption behavior of lanthanum and cerium ions from aqueous solution by leaf powder of Pinus brutia was separately studied in a batch system as a function of initial pH, contact time, initial metal ion concentration, temperature, and adsorbent amount. The uptake of lanthanum and cerium was increased when the initial pH of the solution was increased. Thermodynamic parameters such as standard enthalpy (ΔH°), entropy (ΔS°) and free energy (ΔG°) were calculated and the results indicated that biosorption was endothermic and spontaneous in nature. The biosorption of lanthanum and cerium on powdered leaf of Pinus brutia was investigated by the Freundlich, Langmuir, and D-R isotherms. The results show that lanthanum and cerium adsorption can be explained by the Langmuir isotherm model and monolayer capacity was found as 22.94 mg g?1 for lanthanum and 17.24 mg g?1 for cerium. Desorption of lanthanum and cerium was studied using 0.5 M HNO3 solution. The results suggested that powdered leaf of Pinus brutia may find promising applications for the recovery of lanthanum and cerium from aqueous effluents.  相似文献   

6.
The metal–organic frameworks UiO-66 with amine functional groups were synthesized by microwave irradiation, their structures and properties were characterized. The results show that NH2-UiO-66 can be prepared quickly and well-crystallized by microwave-assisted method within 15 min. The amine-functionalized UiO-66 was octahedral crystals of well defined sizes (500–900 nm) and had a high specific surface area about 924.37 m2 g?1 and micropore range from 2.0 to 11 nm. The amine-functionalized UiO-66 was thermally stable up to 540 °C stability and exhibited a good combination of methylene blue adsorption. The maximum adsorption capacity reached up to 203.95 mg g?1. The kinetics and equilibrium of the adsorption process were found to follow the pseudo-second-order kinetic and Langmuir adsorption model, respectively.  相似文献   

7.
《分离科学与技术》2012,47(5):721-726
Sorption of pentavalent oxyanions P(V), As(V), and Sb(V) was studied on goethite and hematite prepared by its thermal transformation. The surface properties of goethite and products of its thermal modification at different temperatures were studied by BET method, FT-IR, XRD, and DTA-TGA. Amounts of immobilized ions reached their maxima on sorbent prepared at 250°C. Changes of the specific surface area (32.5 m2.g?1 at 150°C, 82.3 m2.g?1 at 250°C and 34.8 m2.g?1 at 350°C) during the thermal transformation at different temperatures were observed. Further analysis confirmed the complete transformation of goethite to hematite at temperatures 200 ? 250°C accompanied with the disappearance of hydroxyl absorption bands at ~800 and ~900 cm?1 in FT-IR spectrum and significant loss of weight observed on TGA curve. The study of adsorption isoterms revealed that antimony has higher affinity for all studied sorbents.  相似文献   

8.
Novolacs phenolic-resin (PF) was easily polycondensed into polymeric powders with sizes and morphologies ranging from microspheres to nanoparticles by a simple solvothermal process without adding any crosslinking agent. Activating the highly divided PF powders by CO2 resulted in nanosize activated carbons with high specific surface area (2092 m2 g?1) and large pore volume (1.33 cm3 g?1) while preserving a high carbon yield of about 38 wt%. As for adsorption tests, the micropore-dominated activated nanocarbons exhibited fast and high adsorption capabilities towards both Cr(VI) ions and bulky rhodamine B molecules due to their much improved external surface area and the greatly shortened intra-particle diffusion distance. The equilibrium adsorption amounts of Cr(VI) and RB on the activated nanocarbons as estimated by the Langmuir model were 200 and 990 mg g?1, achieved within an adsorption time of 30 and 360 min, respectively.  相似文献   

9.
This article provides evidence that jatropha seed coat residues can be used as a carbon source for preparing activated carbons that have good adsorption properties for iodine and methylene blue. Activated carbons were prepared using three different methods of activation, physical, chemical, and physico-chemical, for a range of activation temperatures (600°, 700°, 800°, and 900°C) and activation hold times (1, 2, and 3 h). The highest BET surface area (1479 m2 g?1) and the highest iodine adsorption (1511 mg g?1) were obtained with physico-chemical activation at a temperature of 900°C and a hold time of 2 h. This activated carbon gave higher BET surface area and iodine adsorption than commercial activated carbon (1169.1 m2 g?1 and 1076 mg g?1). The activated carbons prepared by physico-chemical activation at 900°C and 2 h were then tested for adsorption of methylene blue at a range of concentrations of methylene blue (100, 200, 300, 400, and 500 mg L?1). It was found that a Langmuir isotherm gave a better fit (R 2 = 0.999) to the observed adsorptions than a Freundlich isotherm (R 2 = 0.884). For the adsorption kinetics, a pseudo-second-order model gave a better fit (R 2 > 0.998, Δq e  = 3.7%) than a pseudo-first-order model (R 2 ≈ 0.95, Δq e  = 85.6%). These results suggest that chemisorption is the rate-controlling step for the adsorption of methylene blue. The experimental results show that jatropha seed coat is a lignocellulosic waste precursor for preparation of activated carbon that is an alternative source for preparation of commercial-grade activated carbons.  相似文献   

10.
Ordered mesoporous carbon is synthesized by the organic–organic self-assembly method with novolac as carbon precursor and two kinds of triblock copolymers (Pluronic F127 and P123) as template. The hexagonal structure and a worm-hole structure are observed by TEM. The carbonization temperature is determined by TG and FT-IR. Characterization of physical properties of mesoporous carbon is executed by N2 absorption–desorption isotherms and XRD. The mass ratios of carbon precursor/template affect the textural properties of mesoporous carbon. The mesoporous carbon with F127/PF of 1/1 has lager surface area (670 m2 g?1), pore size (3.2 nm), pore volume (0.40 cm3 g?1), smaller microporous surface area (368 m2 g?1) and wall thickness (3.7 nm) compare to that with F127/PF of 0.5/1 (576 m2 g?1, 2.7 nm, 0.29 cm3 g?1, 409 m2 g?1 and 4.3 nm, respectively). The mesoporous carbon prepared by carbonization at high temperature (700 °C) exhibits lager surface area, lower pore size and pore volume than the corresponding one obtained at 500 °C. The structure and order of the resulting materials are notably affected with types of templates. The mesoporous carbon with P123 as template exhibits worm-hole structure compare to that with F127 as template with hexagonal structure. In general, the pore size of mesoporous carbon with novolac as precursor is smaller than that with resorcinol–formaldehyde as precursor.  相似文献   

11.
《分离科学与技术》2012,47(4):705-722
Abstract

The sorption behavior of 3.18×10?6 mol l?1 solution of Tm(III) metal ions onto 7.25 mg l?1 of 1‐(2‐pyridylazo)‐2‐naphthol (PAN) loaded polyurethane foam (PUF) has been investigated at different temperatures i.e. 303 K, 313 K, and 323 K. The maximum equilibration time of sorption was 30 minutes from pH 7.5 buffer solution at all temperatures. The various rate parameters of adsorption process have been investigated. The diffusional activation energy (ΔEads) and activation entropy (ΔSads) of the system were found to be 22.1±2.6 kJ mol?1 and 52.7±6.2 J mol?1 K?1, respectively. The thermodynamic parameters such as enthalpy (ΔH), entropy (ΔS), and Gibbs free energy (ΔG) were calculated and interpreted. The positive value of ΔH and negative value of ΔG indicate that sorption is endothermic and spontaneous in nature, respectively. The adsorption isotherms such as Freundlich, Langmuir, and Dubinin–Radushkevich isotherm were tested experimentally at different temperatures. The changes in adsorption isotherm constants were discussed. The binding energy constant (b) of Langmuir isotherm increases with temperature. The differential heat of adsorption (ΔHdiff), entropy of adsorption (ΔSdiff) and adsorption free energy (ΔGads) at 313 K were determined and found to be 38±2 kJ mol?1, 249±3 J mol?1 K?1 and –40.1±1.1 kJ mol?1, respectively. The stability of sorbed complex and mechanism involved in adsorption process has been discussed using different thermodynamic parameters and sorption free energy.  相似文献   

12.
A new porous carbon with high surface area of 1,313.41 m2 g?1 with pore volume 1.359 cm3 g?1 has been synthesized from matured tea leaves by chemical activation method using phosphoric acid. The carbon was found to be highly efficient for removal of Cr(VI) from aqueous solution. The effects of various parameters such as contact time, initial metal ion concentration, pH, temperature and amount of adsorbent on the extent of adsorption were studied. Langmuir, Freundlich and Temkin adsorption models were used to interpret the experimental data. The adsorption data were best fitted with Langmuir isotherm model. The adsorption capacity of Cr(VI) onto the activated carbon calculated from Langmuir isotherm was found to be 30.8 mg g?1 at pH 4.8 and temperature 303 K. The adsorption capacity increases from 25.36 to 32.04 mg g?1 with an increase in temperature from 303 to 323 K at initial Cr(VI) concentration of 60 mg L?1. The adsorption process followed a pseudo second order kinetic model. Thermodynamic parameters ΔH0 (28.6 KJ mol?1), ΔG0 at three different temperatures [(?0.145, ?1.09, ?2.04) KJ mol?1] and ΔS0 (94.87 J mol?1 K?1) were calculated. These values confirm the adsorption process to be endothermic and spontaneous in nature.  相似文献   

13.
Mesoporous materials with bimodal mesopores show advantages in adsorption, energy storage, and catalysis because such unique structures are beneficial to the mass transfer. Here, we describe the synthesis of bimodal mesoporous carbon nanospheres (BMCSs) by using phenolic resin as carbon precursor, triblock copolymer Pluronic F127 as the soft template, and mesoporous silica spheres as hard templates. The BMCSs with uniform spherical morphology, high specific surface area (1489 m2 g??1), large pore volume (0.92 cm3 g??1), and bimodal mesoporous structure (3.8 and 6.8 nm) exhibit promising properties for adsorption of methyl orange (MO). The maximum adsorption capacity of the BMCSs is 5.5?×?102 ± 0.2?×?102 mg g??1, which is higher than that of many adsorbents reported. The kinetics studies show a better fit of pseudo-second-order model. Meanwhile, fitting equilibrium data show that the Langmuir model is more suitable to describe the MO adsorption than Freundlich model.  相似文献   

14.
ABSTRACT

This study presents the application of fly ash from brown coal and biomass burning power plant as a sorbent for the removal of boron ions from an aqueous solution. The adsorption process efficiency depended on the parameters, such as adsorbent dosage, pH, temperature, agitation time and initial boron concentration. The experimental data fitted well with the Freundlich isotherm model and the maximum capacity was found to be 16.14 mg g?1. The adsorption kinetics followed the pseudo-second-order model. Also, the intra-particle diffusion model parameters were calculated. Thermodynamic parameters such as change in free energy (ΔG°), enthalpy (ΔH°), entropy (ΔS°) revealed on exothermic nature of boron adsorption onto the fly ash.  相似文献   

15.
16.
《分离科学与技术》2012,47(16):2510-2516
Zn2SnO4 powder was prepared by hydrothermal process at 200°C for 12 h. The material was characterized by X-ray-diffraction and surface area. The synthesized sample presented a pure phase and a surface area of 48.8 m2 · g?1. It was used as adsorbent to remove the Reactive Red 141 that is a azo textile dye. The adsorption kinetics of the textile dye on Zn2SnO4 followed the pseudo-second-order model. The adsorption process was found to be controlled by both external mass transfer and intraparticle diffusion. The equilibrium data were in good agreement with both Langmuir and Freundlich isotherms. Thermodynamic parameters were calculated, and the results revealed that the adsorption process is endothermic in nature, with weak forces of the Van der Walls acting.  相似文献   

17.
《分离科学与技术》2012,47(9):2132-2145
Abstract

MgAl2O4 nanopowder has been prepared by alkoxides hydrolysis with further calcination at temperature of 700°C. The adsorption of a leather dye, Direct Black 38, onto this material was investigated. The sample was characterized by X-ray-diffraction (XRD), N2 adsorption–desorption isotherm and Fourier transform infrared spectroscopy. The results showed that sample present a pure phase, and the average nanocrystal size of 8 nm, the BET surface area is about 206.5 m2 · g?1 and total pore volume is about 1.44 cm3 · g?1. Adsorption kinetics data were modeled by film and pore diffusion model. The experimental isotherm was described by the Langmuir model. MgAl2O4 nanopowder presented a great removal efficiency of leather dye by adsorption process, with a maximum adsorption capacity of 833 mg of dye per gram of adsorbent.  相似文献   

18.
Aimed to prepare high efficient dye sorbent and control water pollution, herein we utilized solvothermal method to synthesize porous polyimide (PI) polymer with a large surface area using DMSO as solvent. Unlike the solid-state thermal polymerized PI with low surface area of 5 m2g?1, this PI material prepared in DMSO solvent possessed a large surface area of 430 m2g?1, which was beneficial for adsorption of organic dye in waste water, achieving a max MO adsorption of 200 mg g?1 three times higher than that of multiwalled carbon nanotube. The adsorption kinetics of dye molecules on PI was investigated in detail and the R2 value of 0.99071 for pseudo-second-order model confirms the adsorption was fitted best with Langmuir isotherm.  相似文献   

19.
Cereal-legume-based instant fermented food (Dhokla) is one of the most popular, indigenous fermented foods of India. Central composite design (CCD) was used to conduct fermentation experiments and optimization was carried out using response surface methodology (RSM). The effect of fermentation time (5.5–12.5 h), fermentation temperature (26.5–35.5°C), moisture content of batter (55–65% wb), and rice- to- bengal gram ratio (1.2–2.4) was evaluated with respect to total titratable acidity (TTA), total lactic count (TLC), firmness and overall acceptability scores (OAA) of steam-cooked Dhokla. The optimized condition for fermentation process was TTA 0.64 g mL?1, total lactic count 221.62 cfu g?1, firmness 146.35 g, and OAA score 6.82 at 12.5 h fermentation time, 26.5°C temperature, 65% moisture content of batter and 1.2 rice to bengal gram ratio. Further, the optimized fermented batter was dried by microwave vacuum using independent variables like thickness of batter (10–17 mm), microwave power density (3.5–10 W g?1), and pulsating ratio (1.3–2). The responses studied were bulk density, rehydration ratio, color difference (ΔE), and OAA score. The best combination was found with bulk density 1014.22 kg m?3, rehydration ratio 4.55, ΔE 9.57 and OAA score 6.88 at 17 mm thickness of batter, 10 W g?1 microwave power density, and 1.3 pulsating ratio.  相似文献   

20.
Crystal violet dye (CV) was studied as a corrosion inhibitor for aluminum in hydrochloric acid (1 mol dm?3) and potassium hydroxide (0.5 mol dm?3) solutions in the temperature range 30°–60°C using the gravimetric technique. The effect of iodide ions on the inhibiting efficacy of CV was also assessed. CV was found to inhibit Al corrosion in both aggressive media, exhibiting greater inhibition efficiency in 1 M HCl (83.6%) than in 0.5 M KOH (23.0%). Inhibition efficiency in 0.5 M KOH was, however, synergistically increased in the presence of iodide ions to attain values up to 85.3%. Inhibition efficiency in the acidic and alkaline solutions increased with CV concentration but decreased with rise in temperature, suggesting physical adsorption of CV on the Al surface. The calculated values of activation energy (Ea), free energy of adsorption (ΔGads), and heat of adsorption (Qads) confirm the physisorption mechanism. The inhibitor adsorption characteristics were approximated by the Freundlich adsorption isotherm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号