首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The batch simultaneous saccharification and fermentation (SSF) of microwave/acid/alkali/H2O2 pretreated rice straw to ethanol was optimized using cellulase from Trichoderma reesei and Saccharomyces cerevisiae YC-097 cells prior to the fed-batch SSF studies. The batch SSF optima were 10% w/v substrate, 40°C, 15 mg cellulase/g substrate, initial pH 5.3, and 72 hours. Under the optimum conditions the ethanol concentration and its yield were 29.1 g/L and 61.3% respectively. Based on the optimal batch SSF, the fed-batch SSF was investigated and its operation parameters were optimized. Under its optimal conditions the ethanol concentration reached 57.3 g/L, while its productivity and yield were only slightly less than those in the batch SSF. This suggests that fed-batch SSF is a potential operation mode for effective ethanol production from microwave/acid/alkali/H2O2 pretreated rice straw.  相似文献   

2.
Solid content in the simultaneous saccharification and fermentation (SSF) broth should be as high as possible in order to reach higher ethanol concentration. In this work, several feeding strategies for ethanol production from steam-exploded wheat straw by Kluyveromyces marxianus CECT 10875 have been studied with the aim of obtaining higher ethanol concentrations. Previous fermentability tests as well as SSF processes showed the difficulty of using the slurry for ethanol production under the studied conditions. Notwithstanding, fed-batch SSF processes with water-insoluble solids (WIS) fraction resulted in better configuration, reaching the highest ethanol concentration (36.2 g/L) with an initial WIS content of 10% (w/v) and 4% (w/v) of substrate addition at 12 h, which meant 20% more ethanol when compared with batch SSF.  相似文献   

3.
《分离科学与技术》2012,47(16):2453-2464
The objectives of this study were to investigate the effects of ozone and the O3/H2O2 process on FeCl3 coagulation efficiency for the removal of the high content of natural organic matter (NOM) and arsenic (As) from groundwater (DOC = 9.27 ± 0.92 mg/L; 51.7 ± 16.4 µg As/L). Arsenic and NOM removal mechanisms during coagulation/flocculation are well investigated. However, data concerning arsenic removal in the presence of NOM, which is the subject of this article, are still insufficient. Laboratory and pilot plant test results have shown that the competition of NOM and As for adsorption sites on the coagulant surface have great influence on coagulation/flocculation efficiency for their removal. With both oxidation pre-treatments, arsenic content after the coagulation process was less than 2.0 µg/L in treated water. Application of ozone has a lower influence on coagulation efficacy in terms of DOC reduction, compared to the O3/H2O2 process with the same ozone dose.  相似文献   

4.
ABSTRACT

Antibiotics are non-biodegradable and can remain for a long time at aquatic environments and they have a big potential bio-accumulation in the environment. The antibiotics are broadly metabolized by humans, animals and plants and they or their metabolites, after metabolization, are entered into the aquatic environment. This study aimed to optimize the operational parameters by Taguchi design and to carry out the kinetic studies for removal of cephalexin antibiotic from aqueous solutions by US/H2O2/NiO hybrid process. This experimental study was performed on a laboratory scale in a 500 mL pyrex-made reactor. The main operational parameters to influence the US/H2O2/NiO process were identified as the initial concentration of CEX (20–80 mg/L), hydrogen peroxide (H2O2) (10–40 mL/L), NiO nanoparticle (2.5–10 mg/L) and reaction time (15–90 min) and therefore, the influence of these factors were studied. Under optimum conditions (pH = 3, reaction time = 90 min, CEX = 40 mg/L, NiO = 7.5 mg/L and H2O2 = 30 mL/L) and using the US/H2O2/NiO process, the removal efficiencies of CEX, COD and TOC were 93.86%, 72.46% and 54.55%, respectively. The percentage contribution of each factor was also determined. Results introduced the solution pH as the most powerful factor, and its percentage contribution value was up to 94% in the studied process. It was also identified that the removal of CEX antibiotic using the hybrid process obeys the pseudo-first-order kinetics.  相似文献   

5.
Ozone was tested for the detoxification of a mixture of five parabens. A combined O3/H2O2 process was optimized leading to up to 50% of COD removal in 15 min, while less than 50 min were needed to achieve total degradation. The toxic effect of the raw mixture and after 15 min of treatment by O3/H2O2 was evaluated using V. fischeri and C. fluminea and it was observed a strong detoxification after 15 min of oxidation. Moreover, while the raw effluent promoted the formation of reactive oxygen species in Wistar rat brain slices, no changes were observed after the O3/H2O2 treatment.  相似文献   

6.
Simultaneous saccharification and fermentation (SSF) of alkaline hydrogen peroxide pretreated Antigonum leptopus (Linn) leaves to ethanol was optimized using cellulase from Trichoderma reesei QM‐9414 (Celluclast® from Novo) and Saccharomyces cerevisiae NRRL‐Y‐132 cells. Contrary to the saccharification optima (2.5% w/v substrate concentration, 50 °C, 4.5 pH, 40 FPU cellulase g−1 substrate and 24 h reaction time), the SSF optima was found to be somewhat different (10% w/v substrate, 40 °C, 100 FPU cellulase g−1 substrate and 72 h). Better ethanol yields were obtained with SSF compared with the traditional saccharification and subsequent fermentation (S&F) and when the cellulase was supplemented with β‐glucosidase. © 1999 Society of Chemical Industry  相似文献   

7.
This study evaluated the feasibility of treating color filter effluent by H2O2/UV pre-oxidation and membrane postseparation for in-house reuse. The effluent qualities were TOC of 5.8–34 mg/L, color of 46–138 ADMI, and conductivity of 1020–3500 μS/cm. Although the RO separation could directly remove TOC, color, and conductivity effectively, the serious fouling problem still existed. Through H2O2/UV pre-oxidation (UV = 13 W, H2O2 = 200 mg/L), organic and biofouling were inhibited to increase the normalized flux decline from 5% to 77%. That is, H2O2/UV pre-oxidation could mitigate the permeate flux decline as well as to improve the water quality for water reuse.  相似文献   

8.
Temperature-programmed desorption (TPD) and oxidation (TPO) were used to investigate the decomposition and oxidation of ethanol on Al2O3, Pd/Al2O3, and PdO/Al2O3. Ethyl--13C alcohol (CH3 13CH2OH) was adsorbed on the catalysts so that reaction pathways of the two carbons could be distinguished. Alumina was mainly a dehydration catalyst, but dehydrogenation was also observed and some carbon remained on the surface. In the presence of O2, A12O3 oxidized the decomposition products and the-carbon was oxidized faster. Ethanol, which was adsorbed on A12O3, decomposed much faster on Pd/A12O3 by diffusing to Pd and undergoing CO elimination to form CH4,13CO, H2, and surface carbon. On PdO/A12O3, the decomposition was slower than on Pd/A12O3 until lattice oxygen was extracted above 450 K; the decomposition products were oxidized by lattice oxygen. In the presence of gas phase O2, Pd/Al2O3 was an active oxidation catalyst at low temperature, but lattice oxygen had to be extracted from PdO/A12O3 before it had significant oxidation activity.  相似文献   

9.
The characteristics and influencing factors for dinitrotoluene degradation by nano-Fe3O4-H2O2 were studied, and the nano-scale Fe3O4 catalyst was prepared by the coprecipitation method, with dinitrotoluene wastewater as the degradation object. The results showed that the catalytic reaction system within the pH value range of 1 to 9 could effectively degrade dinitrotoluene, and the optimal pH value was 3; with the increase of catalyst dosage, the degradation efficiency and the catalytic reaction rate of dinitrotoluene grew as well. The optimal catalyst dosage was 1.0 g/L when the H2O2 dosage was within the range of 0 to 0.8 mL/L; the degradation efficiency and reaction rate grew with the increase of H2O2 dosage. With further increase of H2O2 dosage, degradation efficiency and reaction rate decreased; under the best conditions with the H2O2 dosage of 0.8 mL/L, the catalyst concentration of 1 g/L and the pH value of 3 at room temperature (25 °C), the degradation rate of the 100-mg/L dinitrotoluene in 120 min reached 97.6%. Through the use of the probe compounds n-butyl alcohol and benzoquinone, it was proved that the oxidation activity species in the nano-Fe3O4-H2O2 catalytic system were mainly hydroxyl radical (?OH) and superoxide radicals (HO2 ?), based on which, the reaction mechanism was hypothesized.  相似文献   

10.
LiNi1/3Co1/3Mn1/3O2 and LiCoO2 cathode materials were synthesized by using a supercritical water (SCW) method with a metal salt solution in a batch reactor. Stoichiometric LiNi1/3Co1/3Mn1/3O2 was successfully synthesized in a 10-min reaction without calcination, while overlithiated LiCoO2 (Li1.15CoO2) was synthesized using the batch SCW method. The physical properties and electrochemical performances of LiNi1/3Co1/3Mn1/3O2 were compared to those of Li1.15CoO2 by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and charge/discharge cycling tests. The XRD pattern of LiNi1/3Co1/3Mn1/3O2 was found to be similar to that of Li1.15CoO2, showing clear splitting of the (0 0 6)/(1 0 2) and (1 0 8)/(1 1 0) peak pairs as particular characteristics of the layered structure. In addition, both cathode powders showed good crystallinity and phase purity, even though a short reaction time without calcination was applied to the SCW method. The initial specific discharge capacities of the Li1.15CoO2 and LiNi1/3Co1/3Mn1/3O2 powders at a current density of 0.24 mA/cm2 in 2.5-4.5 V were 149 and 180 mAh/g, and their irreversible capacity loss was 20 and 17 mAh/g, respectively. The discharge capacities of the Li1.15CoO2 and LiNi1/3Co1/3Mn1/3O2 powders decreased with cycling and remained at 108 and 154 mAh/g after 30 cycles, which are 79% and 89% of the initial capacities. Compared to the overlithiated LiCoO2 cathode powders, the LiNi1/3Co1/3Mn1/3O2 cathode powders synthesized by SCW method had better electrochemical performances.  相似文献   

11.
The sintering behaviors and microwave dielectric properties of the 16CaO–9Li2O–12Sm2O3–63TiO2 (abbreviated CLST) ceramics with different amounts of V2O5 addition had been investigated in this paper. The sintering temperature of the CLST ceramic had been efficiently decreased by nearly 100 °C. No secondary phase was observed in the CLST ceramics and complete solid solution of the complex perovskite phase was confirmed. The CLST ceramics with small amounts of V2O5 addition could be well sintered at 1200 °C for 3 h without much degradation in the microwave dielectric properties. Especially, the 0.75 wt.% V2O5-doped ceramics sintered at 1200 °C for 3 h have optimum microwave dielectric properties of Kr = 100.4, Q × f = 5600 GHz, and TCF = 7 ppm/°C. Obviously, V2O5 could be a suitable sintering aid that improves densification and microwave dielectric properties of the CLST ceramics.  相似文献   

12.
Laser photolysis of WCl6 in ethanol and a specific mixture of V2O5 and VCl3 in ethanol lead to carbon modified vanadium and tungsten oxides with interesting properties. The presence of graphene’s aromatic rings (from the vibrational frequency of 1,600 cm−1) together with C–C bonding of carbon (from the Raman shift of 1,124 cm−1) present unique optical, vibrational, electronic and structural properties of the intended tungsten trioxide and vanadium dioxide materials. The morphology of these samples shows nano-platelets in WO x samples and, in VO x samples, encapsulated spherical quantum dots in conjunction with fullerenes of VO x . Conductivity studies revealed that the VO2/V2O5 nanostructures are more sensitive to Cl than to the presence of ethanol, whereas the C:WO3 nano-platelets are more sensitive to ethanol than atomic C.  相似文献   

13.
Oxidation of CO on the FeO x /Pt/TiO2 catalyst is markedly enhanced by H2 and/or H2O at 60 °C, but no such enhancement is observed on the Pt/TiO2 catalyst, but shift reaction (CO + H2O → H2 + CO2) does not occur on the FeO x /Pt/TiO2 catalyst at 60 °C. DRIFT-IR spectroscopy reveals that the fraction of bridge bonded CO increases while that of linearly bonded CO decreases on the FeO x loaded Pt/TiO2 catalyst. The in-situ DRIFT IR spectra proved that the bridged CO is more reactive than the linearly bonded CO with respect to O2, and the reaction of the bridge-bonded CO with O2 as well as of the linearly bonded CO is markedly enhanced by adding H2 to a flow of CO + O2. From these results, we deduced that the promoting effect of H2 and/or H2O is responsible for the preferential oxidation (PROX) reaction of CO on the FeO x /Pt/TiO2 catalyst, and a following new mechanism via the hydroxyl carbonyl or bicarbonate intermediate is proposed for the oxidation of CO in the presence of H2O.   相似文献   

14.
Big variations in overall activity and product selectivity in the cyclopentane/deuterium exchange reaction were found in effect of various pretreatments of two chlorine‐free Pd/γ‐Al2O3 catalysts. The most important changes are observed when severely prereduced (at 600 °C) Pd/Al2O3 catalysts have been reoxidised and mildly rereduced: the multiple type of exchange, typical of mildly pretreated Pd catalysts, is replaced by a stepwise mode, and a big increase in catalytic activity occurs. At this state, the Pd/γ‐Al2O3 catalysts retain some water (as surface hydroxyls) generated by reoxidation and mild reduction. Deuterium spillover from Pd onto alumina and changes in acidity of alumina are invoked to rationalize the kinetic results. Changes in the state of Pd after various pretreatments, as probed by temperature‐programmed hydride decomposition, can hardly be correlated with changes in the catalytic behaviour in the exchange reaction. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
《分离科学与技术》2012,47(3):456-470
ABSTRACT

We present a way of synthesizing nanocomposite Fe3O4@SiO2@CTAB–SiO2 by employing simple sol–gel technique with selective etching for extreme selectivity adsorption of cyclophosphamide (CP). The transmission electron microscopy (TEM); scanning electron microscopy (SEM); X-ray diffraction (XRD); Fourier transform infrared (FT-IR); vibrating sample magnetometer (VSM); pHPZC; and Brunauer, Emmett and Teller (BET) techniques were used for nanocomposite characterization. These nanoparticles have an SBET of 157.8 m2 g?1 and a high saturation magnetization of 67.5 emu g?1. First, the adsorption system was examined as a function of contact time under various initial CP contents, ionic strength, initial solution pH, adsorbent dose and temperature in batch test. The optimum dose, pH and contact time were obtained to be 0.01 g, 7.0 and 30 min, respectively. Ultimately, experimental isotherm and kinetics data of adsorption of CP onto nanocomposite Fe3O4@SiO2@CTAB–SiO2 were fitted to classical models. Additionally, it was found that the maximum adsorption process capacity of CP on adsorbent was 342.8 mg g?1.  相似文献   

16.
Fe2-xYxW3O12 powder has been synthesized by the citrate sol-gel process. A model was proposed to calculate the concentration of species in a citric solution. The calculated results could provide valuable information for determining the optimal molar ratio of cation to citric acid and pH value of solution for Fe2-xYxW3O12 preparation. The predicted parameters derived from this model are in good agreement with the experimental results. The prepared gel and the Fe2-xYxW3O12 powder were characterized by X-ray diffraction (XRD) and differential thermal analysis-thermogravimetry (DTA-TG). The results show that it is very difficult to obtain pure Fe2W3O12 powder by the citrate sol-gel process in the temperature range 500°–1000°C, however, Y2W3O12 can easily be prepared even at 500°C. Y2W3O12 annealed at 1000°C for 10 h is favorable for absorbing moisture in air to form Y2W3O12·3.3H2O. The thermal expansion coefficients of Y2W3O12·3.3H2O are: αa = ? 8.01 × 10?6°C?1, αb = ? 2.51 × 10?7°C?1, and αc = ? 5.55 × 10?6°C?1 in 473–1173 K.  相似文献   

17.
Bench scale fuel cell tests have been carried out on the SO2 oxidation catalyst systems V2O5/M2S2O7 (M = alkali) used as electrolytes in a standard molten carbonate fuel cell (MCFC) fuel cell setup for removal of SO2 from power plant flue gases. Porous Li x Ni(1–x)O electrodes were used both as anode and cathode. The cleaning cell removes SO2 when a potential is applied across the membrane, potentially providing cheap and ecological viable means for regeneration of SO2 from off-gases into high quality H2SO4. Results show that successful removal of up to 80% SO2 at 450 °C can be achieved at approximately 5 mAcm–2. However, the data obtained during the experiments explain the current limitations of the process, especially in terms of electrolyte wetting capability and acid/base chemistry of the electrolyte.  相似文献   

18.
N Sharma 《Electrochimica acta》2004,49(7):1035-1043
The electrochemical performance of mixed oxides, Ca2Fe2O5 and Ca2Co2O5 for use in Li-ion batteries was studied with Li as the counter electrode. The compounds were prepared and characterized by X-ray diffraction and SEM. Ca2Fe2O5 showed a reversible capacity of 226 mAh/g at the 14th cycle and retained 183 mAh/g at the end of 50 cycles at 60 mA/g in the voltage window 0.005-2.5 V. A reversible capacity in the range, 365-380 mAh/g, which is stable up to 50 charge-discharge cycles is exhibited by Ca2Co2O5 in the voltage window, 0.005-3.0 V and at 60 mA/g. This corresponds to recycleable moles of Li of 3.9±0.1 (theoretical: 4.0). Significant improvement in the cycling performance and attainable reversible capacity were noted for Ca2Co2O5 on cycling to an upper cut-off voltage of 3.0 V as compared to 2.5 V. Coulombic efficiency for both compounds is >98%. Electrochemical impedance spectroscopy (EIS) data clearly indicate the reversible formation/decomposition of polymeric surface film on the electrode surface of Ca2Co2O5 in the voltage window, 0.005-3.0 V. Cyclic voltammetry results compliment the galvanostatic cycling data.  相似文献   

19.
The effects of thermal aging and H2O treatment on the physicochemical properties of BaO/Al2O3 (the NOx storage component in the lean NOx trap systems) were investigated by means of X-ray diffraction (XRD), BET, TEM/EDX and NO2 TPD. Thermal aging at 1000 °C for 10 h converted dispersed BaO/BaCO3 on Al2O3 into low surface area crystalline BaAl2O4. TEM/EDX and XRD analysis showed that H2O treatment at room temperature facilitated a dissolution/reprecipitation process, resulting in the formation of a highly crystalline BaCO3 phase segregated from the Al2O3 support. Crystalline BaCO3 was formed from conversion of both BaAl2O4 and a dispersed BaO/BaCO3 phase, initially present on the Al2O3 support material after calcinations at 1000 and 500 °C, respectively. Such a phase change proceeded rapidly for dispersed BaO/BaCO3/Al2O3 samples calcined at relatively low temperatures with large BaCO3 crystallites observed in XRD within 10 min after contacting the sample with water. Significantly, we also find that the change in barium phase occurs even at room temperature in an ambient atmosphere by contact of the sample with moisture in the air, although the rate is relatively slow. These phenomena imply that special care to prevent the water contact must be taken during catalyst synthesis/storage, and during realistic operation of Pt/BaO/Al2O3 NOx trap catalysts since both processes involve potential exposure of the material to CO2 and liquid and/or vapor H2O. Based on the results, a model that describes the behavior of Ba-containing species upon thermal aging and H2O treatment is proposed.  相似文献   

20.
LiCo2/3Ni1/6Mn1/6O2 layered oxide was synthesized by the combustion method that led to a crystalline phase with good homogeneity and low particles size. The structural properties of the prepared positive electrode material were investigated by performing XRD Rietveld refinement. Practically no Li/Ni mixing was detected evidencing that the studied compound adopts almost an ideal α-NaFeO2 type structure. The Li||LiCo2/3Ni1/6Mn1/6O2 cell showed a discharge capacity of 199 mAh g−1 when cycled in the 2.7–4.6 V potential range while the best cycling performances were recorded when the upper cut off is fixed at 4.5 V. Structural changes in LixCo2/3Ni1/6Mn1/6O2 with lithium electrochemical de-intercalation were studied using X-ray diffraction. This study clearly shows the existence of a solid solution domain in the 0.1 < x < 1.0 composition range while for x = 0.1, a new phase appears explaining the decrease of the electrochemical performance when the cell is cycled at high upper cut off voltage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号