首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《分离科学与技术》2012,47(5):1239-1259
Abstract

The present study aims to evaluate the influence of various experimental parameters viz. initial pH (pH 0), adsorbent dose, contact time, initial concentration and temperature on the adsorptive removal of furfural from aqueous solution by commercial grade activated carbon (ACC). Optimum conditions for furfural removal were found to be pH 0 ≈ 5.9, adsorbent dose ≈ 10 g/l of solution and equilibrium time ≈ 6.0 h. The adsorption followed pseudo‐second‐order kinetics. The effective diffusion coefficient of furfural was of the order of 10?13 m2/s. Furfural adsorption onto ACC was found to be best represented by the Redlich‐Peterson isotherm. A decrease in the temperature of the operation favorably influenced the adsorption of furfural onto ACC. The positive values of the change in entropy (ΔS 0); and the negatived value of heat of adsorption (ΔH 0) and change in Gibbs free energy (ΔG 0) indicated feasible, exothermic, and spontaneous nature of furfural adsorption onto ACC.  相似文献   

2.
The present study deals with the sorptive removal of furfural from aqueous solution by carbon-rich bagasse fly ash (BFA). Batch studies were performed to evaluate the influence of various experimental parameters, namely, initial pH (pH0), adsorbent dose, contact time, initial concentration, and temperature on the removal of furfural. Optimum conditions for furfural removal were found to be pH0 ≈ 5.5, adsorbent dose ≈4 g/L of solution, and equilibrium time ≈4 h. The adsorption followed pseudo-second-order kinetics. The effective diffusion coefficient of furfural is of the order of 10-13 m2/s. Equilibrium adsorption data on BFA was analyzed by Freundlich, Langmuir, Dubnin-Radushkevich, Redlich-Peterson, and Temkin isotherm equations using regression and error analysis. The Redlich-Peterson isotherm was found to best represent the data for furfural adsorption onto BFA. Adsorption of furfural on BFA is favorably influenced by a decrease in the temperature of the operation. Values of the change in entropy (ΔS0) and heat of adsorption (ΔH0) for furfural adsorption on BFA were negative. The high negative value of change in Gibbs free energy (ΔG0) indicates the feasible and spontaneous adsorption of furfural on BFA.  相似文献   

3.
The present study explains the preparation and application of sulfuric acid–treated orange peel (STOP) as a new low-cost adsorbent in the removal of methylene blue (MB) dye from its aqueous solution. The effects of temperature on the operating parameters such as solution pH, adsorbent dose, initial MB dye concentration, and contact time were investigated for the removal of MB dye using STOP. The maximum adsorption of MB dye onto STOP took place in the following experimental conditions: pH of 8.0, adsorbent dose of 0.4 g, contact time of 45 min, and temperature of 30°C. The adsorption equilibrium data were tested by applying both the Langmuir and Freundlich isotherm models. It is observed that the Freundlich isotherm model fitted better than the Langmuir isotherm model, indicating multilayer adsorption, at all studied temperatures. The adsorption kinetic results showed that the pseudo-second-order model was more suitable to explain the adsorption of MB dye onto STOP. The adsorption mechanism results showed that the adsorption process was controlled by both the internal and external diffusion of MB dye molecules. The values of free energy change (ΔG o) and enthalpy change (ΔH o) indicated the spontaneous, feasible, and exothermic nature of the adsorption process. The maximum monolayer adsorption capacity of STOP was also compared with other low-cost adsorbents, and it was found that STOP was a better adsorbent for MB dye removal.  相似文献   

4.
《分离科学与技术》2012,47(13):3563-3581
Abstract

The adsorption of Cr(VI) from aqueous solution by Turkish vermiculite were investigated in terms of equilibrium, kinetics, and thermodynamics. Experimental parameters affecting the removal process such as pH of solution, adsorbent dosage, contact time, and temperature were studied. Equilibrium adsorption data were evaluated by Langmuir, Freundlich and Dubinin–Radushkevich (D–R) isotherm models. Langmuir model fitted the equilibrium data better than the Freundlich model. The monolayer adsorption capacity of Turkish vermiculite for Cr(VI) was found to be 87.7 mg/g at pH 1.5, 10 g/L adsorbent dosage and 20°C. The mean free energy of adsorption (5.9 kJ/mol) obtained from the D–R isotherm indicated that the type of sorption was essentially physical. The calculated thermodynamic parameters (ΔG o , ΔH o and ΔS o ) showed that the removal of Cr(VI) ions from aqueous solution by the vermiculite was feasible, spontaneous and exothermic at 20–50°C. Equilibrium data were also tested using the adsorption kinetic models and the results showed that the adsorption processes of Cr(VI) onto Turkish vermiculite followed well pseudo-second order kinetics.  相似文献   

5.
A test laboratory (lab) for carbon dioxide (CO2) adsorption from raw biogas onto a novel adsorbent was used to size a CO2 removal unit in the development of a low-cost biogas treatment technology. The novel adsorbent was made out of clay and burnt maize cob particles, impregnated with hot natural alkaline solution of pH 10 ± 0.5, degassed, and then activated at a temperature of 250°C, thereby making it low cost. The activated absorbents were spherical balls of average diameter 17 mm, density 410 kg/m3, and surface area 128 m2/g, and contained exchangeable ions due to the presence of clay and increased pore sizes due to impregnation, degassing, and activation. The effect of pressure drops on CO2 removal, the breakthrough curve, and the absorption isotherm were studied. As a result, reduced pressure drops enhanced CO2 removal and 102 Pa/m was the suitable pressure drop; pressure drops less than 102 Pa/m were impractical because the biogas did not exit. The breakthrough curve was in typical s-shape and thus satisfied its use for determining the adsorption rate constant (k1) to be 0.001952 l/mg s and the maximum percent of CO2 removal to be 87.8% at 102 Pa/m pressure drop and temperatures ranging from 20 to 28°C. The isotherm was found to closely conform to the definition of the Freundlich equation with the Freundlich coefficient of 0.01809 (l/g)n, where n = 1.37 at the same temperature range. Therefore, the determined k1 and fitted Freundlich isotherm can be used to size the CO2 adsorption unit under these conditions.  相似文献   

6.
Adsorption removal of Cu (II) and Pb (II) on cross-linked chitosan/Al13-pillared montmorillonite (CCPM) was examined in solutions. The chitosan dosage was drastically reduced in the new nanocomposite, which is made from the treated clay (Al13-pillared montmorillonite). Several important parameters that influenced the adsorption of Cu (II) and Pb (II) ions, such as cross-linked chitosan-to-clay ratio, pH, temperature, initial concentration, dosage, and contact time effect, were systematically investigated. Result showed that in the nanocomposite with cross-linked chitosan-to-clay ratio of 0.45:1, the maximum removal efficiencies of Cu (II) [pH 6.5, dosage 10 g/L, initial Cu (II) concentration 100 mg/L, contact time 2 h, 298 K] and Pb (II) [pH 6.0, dosage 5 g/L, initial Pb (II) concentration 100 mg/L, contact time 2 h, 298 K] were 96.0% and 99.5%, respectively. Kinetic and isotherm studies have indicated that the adsorption process of Cu (II) or Pb (II) nanocomposites was better fitted by the pseudo-second-order equation and the Freundlich equation, with chemical adsorptions as the rate-limiting step. The metal–ion affinity to the functional groups of CCPM followed the order Pb (II) > Cu (II). The thermodynamic parameters ΔH and ΔS values showed that the sorption process of Cu (II) or Pb (II) was spontaneous (ΔG < 0), was endothermic (ΔH < 0), and had decreased entropy (ΔS < 0). HNO3 (0.1 M) could be a good desorbent in the recovery of metal ions after adsorption and regeneration of the adsorbent.  相似文献   

7.
The ZnO/ZnMn2O4 nanocomposite (ZnMn) was used as adsorbent for the removal of cationic dye Basic Yellow 28 (BY28) from aqueous solutions. The adsorbent was characterized by X-ray diffraction, scanning electron microscope, TEM, Fourier transform infrared ray, BET, particle size distribution and zeta potential measurements. The adsorption parameters, such as temperature, pH and initial dye concentration, were studied. Kinetic adsorption data were analyzed using the pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models. The Langmuir and Freundlich isotherm models were applied to fit the equilibrium data. The maximum adsorption capacity of BY28 was 48.8 mg g?1. Various thermodynamic parameters, such as ΔG°, ΔH° and ΔS°, were calculated.  相似文献   

8.
Removal of Neutral Red from aqueous solution by using modified hectorite   总被引:1,自引:0,他引:1  
The object of this work was to study the modified hectorite as effective adsorbent for Neutral Red (NR) from aqueous solution. The adsorbent capacity of modified hectorite was discussed. The effects of surfactant content, adsorbent content, pH and adsorption temperature on the sorption of NR on modified hectorite were studied. Experimental results showed that the equilibrium adsorption data fitted well with Langmuir isotherm and the adsorption capacity was 393.70 mg/g for the modified cetylpyridinium bromide hectorite (CPB-Hect). Kinetic studies showed that the dynamical data fitted well with the pseudo-second-order kinetic model. For thermodynamic studies, parameters such as the Gibbs free energy (ΔG0), the enthalpy (ΔH0) and the entropy (ΔS0) indicated that the adsorption process was spontaneous and endothermic in nature.  相似文献   

9.
《分离科学与技术》2012,47(8):1066-1075
Pure form, single phase, and highly crystalline low-silica zeolite Y was synthesized from natural nanotubular halloysite mineral by the hydrothermal method. In the synthesis process, the halloysite consisted of SiO2 and Al2O3 was used as starting material with adding supplementary silica and alumina sources. Ammonium adsorption properties of the as-synthesized zeolite Y were studied using batch experiments and the results revealed that its adsorption properties were strongly dependent on contact time, adsorbent dosage, pH, ionic strength, temperature, and initial concentration. The equilibrium data fit well with the Langmuir isotherm compared with the Freundlich isotherm. Kinetic studies showed that the adsorption followed the pseudo-second-order model. Thermodynamic parameters such as change in free energy (ΔG 0), enthalpy (ΔH 0), and entropy (ΔS 0) were also determined, which indicated that the adsorption of ammonium on zeolite Y was a spontaneous and exothermic process at ambient conditions. Due to its low cost, high adsorption capacity and fast adsorption rate, the zeolite Y synthesized from halloysite has the potential to be utilized for the cost-effective removal of ammonium from wastewater.  相似文献   

10.
Z. Elouear  J. Bouzid  N. Boujelben 《Fuel》2008,87(12):2582-2589
The removal characteristics of cadmium (Cd(II)) and nickel (Ni(II)) ions from aqueous solution by exhausted olive cake ash (EOCA) were investigated under various conditions of contact time, pH, initial metal concentration and temperature. Batch kinetic studies showed that an equilibrium time of 2 h was required for the adsorption of Ni(II) and Cd(II) onto EOCA. Equilibrium adsorption is affected by the initial pH (pH0) of the solution. The pH0 6.0 is found to be the optimum for the individual removal of Cd(II) and Ni(II) ions by EOCA. The adsorption test of applying EOCA into synthetic wastewater revealed that the adsorption data of this material for nickel and cadmium ions were better fitted to the Langmuir isotherm since the correlation coefficients for the Langmuir isotherm were higher than that for the Freundlich isotherm. The estimated maximum capacities of nickel and cadmium ions adsorbed by EOCA were 8.38 and 7.32 mg g−1, respectively. The thermodynamic parameters for the adsorption process data were evaluated using Langmuir isotherm. The free energy change (ΔG°) and the enthalpy change (ΔH°) showed that the process was feasible and endothermic respectively. As the exhausted olive cake is discarded as waste from olive processing, the adsorbent derived from this material is expected to be an economical product for metal ion remediation from water and wastewater.  相似文献   

11.
Removal of Cr (VI) from aqueous solution by newspapers   总被引:1,自引:0,他引:1  
The potential to remove Cr (VI) ions from aqueous solution using newspapers was investigated in the present study. The effects of relevant parameters such as solution pH, adsorbent concentration, and reaction temperature on Cr (VI) adsorption were examined. The adsorption of Cr (VI) ions onto newspapers was found to be highly pH-dependent and the highest uptake occurred at pH 1.0. The sorption equilibrium data were correlated to the Langmuir, Freundlich, Redlich-Peterson and Dubinin-Radushkevich equations. Five different non-linear error functions were examined and the result indicated that the Freundlich and Redlich-Peterson equations better fitted the equilibrium data than Langmuir isotherm. The maximum sorption capacity was found to be 55.06 mg/g at pH 1.0, adsorbent concentration 4 g/L and reaction temperature of 30 °C. Different thermodynamic parameters viz., changes in standard free energy (ΔG0), enthalpy (ΔH0) and entropy (ΔS0) were also evaluated and the results show that the sorption process was spontaneous and endothermic in nature. The kinetic experimental data were well fitted by the pseudo-second order, external film diffusion and diffusion models allowing the corresponding parameters to be evaluated. The sorption capacity increased with the decrease of adsorbent concentration.  相似文献   

12.
《分离科学与技术》2012,47(13):1898-1905
Batch adsorption studies were carried out using H2SO4 modified sugarcane bagasse (HMSB) for the removal of hazardous Crystal Violet (CV) dye from aqueous solutions. The effects of initial solution pH, adsorbent dose, and temperature on the adsorption process were investigated. The Langmuir isotherm model well described the equilibrium dye uptake while the pseudo-second-order kinetic model showed good agreement with the experimental kinetic data. Gibb's free energy change (ΔG0) was spontaneous for all interactions, and the adsorption process exhibited endothermic enthalpy values. Results suggest that HMSB is an effective adsorbent for the removal of CV from wastewater.  相似文献   

13.
《分离科学与技术》2012,47(16):2555-2566
ABSTRACT

The present study is concerned usage of paper mill sludge (PMS) as an effective adsorbent to remove the two cationic character dyes (Basic Blue 3 [BB3] and Basic Yellow 28 [BY28]) from aqueous solutions. The surface morphology and some characteristics of PMS were determined by Fouirer Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Brunauer Emmett Teller (BET). The parameters affecting the process – temperature (10–55°C), adsorbent dose (0.5–10 g/l), initial pH (2–10 pH), initial concentration (50–250 mg/l) and contact time (0–24 h) – were examined in the batch adsorption experiments. Maximum adsorption capacities (qmax) of two dyes at 1 g/l dose and pH value of 7 were also calculated as 89.35 and 79.81, respectively. Adsorption phenomena of BB3 and BY28 cationic dyes onto PMS is controlled by pseudo-second-order model. Thereafter, equilibrium experimental data were applied to Langmuir, Freundlich and Dubinin–Redushkevich (D-R) isotherms, and Langmuir isotherm is the best represent the equilibrium adsorption process for both dyes. The processes occurred by physical adsorption because of calculated activation values (Ea) of BB3 and BY28 dyes were 19.43 and 9.35 kJ/mol, respectively. In addition, based on thermodynamic calculations such as free energy (Δ), enthalpy (Δ) and entropy (Δ), the results clearly demonstrated that the adsorption process were of exothermic and spontaneous nature for both dyes. At the light of obtained findings, it can be stated that PMS can be used effectively in removal of cationic dyes from textile wastewaters and is an alternative to commercial adsorbents due to its low-cost and abundance in the paper industries.  相似文献   

14.
Struvite powder obtained from swine wastewater was used as adsorbent to remove an azo leather dye from aqueous solution. The material was characterized by X-ray diffraction, surface area, and atomic force microscopy. The sample presented a single phase having a mesoporous structure and surface area of 35.63 m2 g?1. Langmuir and Freundlich isotherm models were fitted to the adsorption data and both satisfactorily represented the process. The maximum adsorption capacity was 38.14 mg g?1. From the analysis of thermodynamic parameters such as free energy of adsorption (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) it was verified that the adsorption process is very fast, spontaneous, and exothermic in nature, with weak forces acting.  相似文献   

15.
A weak acid acrylic resin was used as an adsorbent for the investigation of Basic Blue 3 (BB3) adsorption kinetics, isotherms, and thermodynamic parameters. Batch adsorption studies were carried out to evaluate the effect of pH, contact time, initial concentration (28–100 mg/g), adsorbent dose (0.05–0.3 g), and temperature (290–323 K) on the removal of BB3. The adsorption equilibrium data were analyzed by the Langmuir, Temkin, and Freundlich isotherm models, with the best fitting being the first one. The adsorption capacity (Qo) increased with increasing initial dye concentration, adsorbent dose, and temperature; the highest maximum Qo (59.53 mg/g) was obtained at 323 K. Pseudo‐first‐order and pseudo‐second‐order kinetic models and intraparticle diffusion models were used to analyze the kinetic data; good agreement between the experimental and calculated amounts of dye adsorbed at equilibrium were obtained for the pseudo‐second‐order kinetic models for the entire investigated concentrations domain. Various thermodynamic parameters, such as standard enthalpy of adsorption (ΔHo = 88.817 kJ/mol), standard entropy of adsorption (ΔSo = 0.307 kJ mol?1 K?1), and Gibbs free energy (ΔGo < 0, for all temperatures investigated), were evaluated and revealed that the adsorption process was endothermic and favorable. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
《分离科学与技术》2012,47(3):507-517
The adsorption characteristics of Pb2+ on pre-boiled treated onion skins (PTOS) and formaldehyde-treated onion skins (FTOS) were evaluated. The effects of Pb2+ initial concentration, agitation rate, solution pH, and temperature on Pb2+ adsorption were investigated in batch systems. Pb2+ adsorption was found to increase with increase in initial concentration. The point of zero net charge (PZC) was 6.53. The optimum pH for the maximum removal of Pb2+ was 6.0. The adsorption equilibrium data was best represented by the Langmuir isotherm model for FTOS and the Freundlich isotherm model for PTOS. The maximum amounts of Pb2+ adsorbed (qm), as evaluated by the Langmuir isotherm, was 200 mgg?1 for FTOS. The efficiencies of PTOS and FTOS for Pb2+ removal were 84,8.0% and 93.5% at 0.15 g/200 mL?1 adsorbent dose, respectively. (C 0 = 50 mg L?1). Study concluded that onion skins, a waste material, have good potential as an adsorbent to remove toxic metals like Pb2+ from water. Boehm titration analysis was conducted to determine the surface groups. It was found that the adsorption kinetics of Pb2+ obeyed pseudo-first-order kinetic model as based on Δq (%) values. FTIR and SEM images before and after adsorption was recorded to explore changes in adsorbent-surface morphology. Activation energy (Ea) was obtained as 25.596 kJ/mol.  相似文献   

17.
《分离科学与技术》2012,47(12):2427-2443
Abstract

The sorption of lead ions on sawdust has been exploited to evaluate its potential for the decontamination of lead ions from aqueous solutions. Various physico‐chemical parameters such as selection of appropriate electrolyte, equilibration time, amount of adsorbent, concentration of adsorbate, effect of diverse ions and temperature were studied in order to simulate the best conditions in which this material can be used as an adsorbent. Maximum adsorption was observed at 0.005 mol · L?1 acid solutions (HNO3, HCl, and HClO4) using 0.2 g of adsorbent for 4.83×10?5 mol · L?1 lead concentration in 10 min equilibration time. Studies show that the adsorption of lead decreases with the increase in the concentrations of all the acids. The adsorption data follows the Freundlich isotherm over the lead concentration range of 2.41×10?5 to 4.83×10?4 mol · L?1. The characteristic Freundlich constants, i.e., 1/n=0.49±0.02 and K=0.142±0.0038 m · mol · g?1 have been computed for the sorption system. The sorption mean free energy from the Dubinin‐Radushkevich isotherm is 11.26±0.31 kJ mol?1 indicating ion‐exchange mechanism of chemisorption. The uptake of lead decreases with the rise in temperature (293–323 K). Thermodynamic quantities, i.e., ΔG, ΔS, and ΔH have also been calculated for the system. The sorption process was found to be exothermic. The proposed procedure was applied for the removal of lead from battery water samples.  相似文献   

18.
The feasibility of using tea waste (TW) as a low-cost adsorbent for the adsorption of an anionic dye (Congo red) from aqueous solution has been investigated. Adsorption in a batch process was conducted to study the effect of adsorbent dosage, initial dye concentration, contact time, pH, and temperature. The experimental data were analyzed by the Langmuir, Freundlich, and Temkin models. The adsorption system was best described by the Langmuir isotherm (R 2 > 0.99). Adsorption kinetics followed a pseudo-second-order model (R 2 > 0.99). The effect of mechanical treatment (vibratory mill) was also studied. The experimental results showed that using this physical treatment leads to an increase in the adsorption capacity of TW from 32.26 to 43.48 mg/g. Thermodynamic analyses revealed that the adsorption of Congo red on TW was endothermic and spontaneous in nature. The results indicated that TW can be employed as a potential low-cost adsorbent for the removal of Congo red from aqueous solution.  相似文献   

19.
《分离科学与技术》2012,47(7):1638-1655
Abstract

The treated almond peels (TAP) have been employed as adsorbents for the removal of Brilliant green dye from waste water. The nature of possible adsorbent and dye interaction was examined by the FTIR and SEM technique. The adsorption of BG was found to be maximum (93%) at pH 8. The extent of removal of BG was found to be dependent on the adsorbent dose, the temperatures, and the times. The equilibrium data for adsorption was best represented by the Langmuir isotherm. Thermodynamic parameters (ΔH0 and ΔG0) suggest endothermic and spontaneous process. Kinetic studies show better applicability of second-order kinetic model. The practical utility of TAP was demonstrated by removing BG from pure solution and industrial effluent system by column process. It was found that the removal effficiency of TAP was better by pure solution. The breakthrough capacities of pure solution and industrial effluent systems on TAP are found to be 30 and 17 mg/g, respectively.  相似文献   

20.
《分离科学与技术》2012,47(12):2685-2710
Abstract

The present study deals with the competitive adsorption of cadmium (Cd(II)) and zinc (Zn(II)) ions onto bagasse fly ash (BFA) from binary systems. BFA is a waste obtained from the bagasse‐fired boilers of sugar mills. The initial pH≈6.0 is found to be the optimum for the individual removal of Cd(II) and Zn(II) ions by BFA. The equilibrium adsorption data were obtained at different initial concentrations (C 0 = 10–100 mg/l), 5 h contact time, 30°C temperature, BFA dosage of 10 mg/l at pH 0 = 6. The Redlich–Peterson (R–P) and the Freundlich models represent the single ion equilibrium adsorption data better than the Langmuir model. The adsorption capacities in the binary‐metal mixtures are in the order Zn(II)>Cd(II) and is in agreement with the single‐component adsorption data. The equilibrium metal removal decreases with increasing concentrations of the other metal ion and the combined action of Cd(II) and Zn(II) ions on BFA is found to be antagonistic. Equilibrium isotherms for the binary adsorption of Cd(II) and Zn(II) ions on BFA have been analyzed by non‐modified Langmuir, modified Langmuir, extended‐Langmuir, Sheindorf–Rebuhn–Sheintuch (SRS), non‐modified R–P and modified R–P adsorption models. The isotherm model fitting has been done by minimizing the Marquardt's percent standard deviation (MPSD) error function using MS Excel. The SRS model satisfactory fits for most of the adsorption equilibrium data of Cd(II) and Zn(II) ions onto BFA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号