首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Air, acid, and electrochemical oxidation treatments have been employed to carefully control the amount and distribution of acidic surface groups in a series of activated carbons prepared from apricot stones. The surface reactivity and functional group distribution of oxidized active carbons have been assessed using numerous analytical and surface measurement techniques including nitrogen sorption, elemental analysis, potentiometric titrations, zeta potential measurements, and Boehm's titrations. Preliminary electrochemical oxidation results suggest that this treatment provides better control of the resultant surface acidity of the prepared carbons. Lead and copper sorption studies indicate that it is possible to alter the selectivity of the oxidized active carbons towards heavy metals by changing the quantity and/or relative proportion of the individual oxygenated surface functional groups.  相似文献   

2.
Characterisation of the surface of oxidised carbon adsorbents   总被引:2,自引:0,他引:2  
The surface reactivity and functional group content of a series of oxidised active carbons has been assessed by elemental analysis, electrophoretic mobility measurements and potentiometric titrations. Oxidation of carbons with hot air resulted in a greater proportion of relatively weak acidic surface functional groups (i.e., phenolic), whereas nitric acid modification produced a greater amount of carboxylic groups. Electrophoretic mobility measurements suggest that the carbon surface is negatively charged within the range of the pH values studied. pH titration results indicate that the surface acidity of active carbons is stronger than that of a commercial polymeric carboxylic acid ion exchange resin. Possible mechanisms of carbon surface oxidation are discussed.  相似文献   

3.
Zeolite templated carbon (ZTC) was electrochemically oxidized under various conditions, and its chemistry and structural evolution were compared to those produced by conventional chemical oxidation. In both oxidation methods, a general loss of the original structure regularity and high surface area was observed with increasing amount of oxidation. However, the electrochemical method showed much better controllability and enabled the generation of a large number of oxygen functional groups while retaining the original structure of the ZTC. Unlike chemical treatments, highly microporous carbons with an ordered 3-D structure, high surface area (ranging between 1900 and 3500 m2/g) and a large number of oxygen groups (O = 11,000–3300 μmol/g), have been prepared by the electrochemical method. Some insights into the electrooxidation mechanism of carbon materials are proposed from the obtained polarization curves, using ZTC as a model carbon material.  相似文献   

4.
Single‐walled carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWCNTs) were oxidized by NaClO solutions and were employed as sorbents to study sorption characteristics of nickel(II) from aqueous solution. The surface properties of CNTs such as functional groups, total acidic sites and negatively charged carbons were greatly improved after oxidation, which made CNTs become more hydrophilic and resulted in sorption of more Ni2+. The amount of Ni2+ sorbed onto oxidized CNTs increased with a rise in agitation speed, initial Ni2+ concentration and solution pH in the range 1–8, but decreased with a rise in CNT mass and solution ionic strength. The sorption mechanisms are complicated and appear attributable to electrostatic forces and chemical interactions between the Ni2+ and the surface functional groups of the CNTs. The oxidized SWCNTs and MWCNTs have shorter equilibrium time and better Ni2+ sorption performance than the oxidized granular activated carbon, suggesting that both NaClO oxidized CNTs are efficient Ni2+ sorbents and that they possess good potential applications in water treatment. Copyright © 2006 Society of Chemical Industry  相似文献   

5.
The effects of the nitric acid surface oxidation of nitrogen-containing carbons (SCN-type) on the chemical structure as well as the electrochemical properties of powdered electrodes prepared from them were studied. The oxidation efficiency was dependent on the duration of the oxidative modification. The surface chemistry was characterized using standard neutralization techniques and spectroscopic methods (FTIR and XPS). Electrochemically active surface groups obtained on carbon materials during oxidation were investigated by cyclic voltammetry. Some noteworthy relations between the electrochemical activity of carbon electrode material and the degree of surface oxidation are reported.  相似文献   

6.
Camille Petit  John Mahle 《Carbon》2010,48(6):1779-141
Two carbons with different sulfur contents were prepared and oxidized either by heating in air or by chemical treatment. The samples were then tested as adsorbents of arsine in dynamic conditions at room temperature, both in dry conditions and in the presence of moisture. Chemical and structural features of the initial and arsine-exposed materials were analyzed by energy dispersive X-ray spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analyses, sorption of nitrogen and sorption of water. It was found that oxygen- and sulfur-containing groups participate in arsine oxidation to arsenic tri- and pentoxide and/or in the formation of arsenic sulfides. This occurred either via activation of oxygen or a direct involvement of these groups in reactions with arsine. A very hydrophilic surface of sulfur-containing carbons, which causes the presence of adsorbed water, even in dry conditions, enhances arsine removal. On the other hand, in moist conditions water totally occupies the pore system blocking the catalytic action of the surface toward oxidation, which leads to a very limited or zero AsH3 adsorption capacity.  相似文献   

7.
Jerzy Zawadzki 《Carbon》1980,18(4):281-285
The investigations were carried out on carbonaceous films prepared by carbonization of polyfurfuryl alcohol and of cellulose. The chemical structure of carbons oxidized with HNO3 solution was studied using an IR spectroscopic technique. The same method was also used to examine the intermediate stages of oxidation process and the thermal stability of formed surface functional groups.  相似文献   

8.
SO2 removal from flue gases by carbonaceous materials is determined by their behaviour as catalysts for SO2 oxidation into SO3 or H2SO4 in the presence of O2 or O2 and steam, respectively. Previous studies have demonstrated that nitrogen (N) functional groups are active sites for the adsorption and oxidation of SO2, although the nature of the N groups with the higher activity had not been established yet. For this reason, in the present work a number of activated carbons (AC) and activated carbon fibres (ACF) doped with N atoms have been prepared using different methods. The number and nature of these N groups have been assessed by XPS. The materials prepared have a wide range of nitrogen content, which is distributed into different chemical species. In this way, we were able to determine the effect of the N content and the role of the different N-containing functional groups on the catalytic activity for SO2 oxidation. The results confirm that, although the pore volume and the pore size distribution strongly influence the catalytic activity, the presence of N species at the surface increases the catalytic activity. They also demonstrate that, among the different N functional groups, pyridinic nitrogen is the most active for this reaction.  相似文献   

9.
The electro-oxidation of carbon materials enormously degrades their performance and limits their wider utilization in multiple electrochemical applications. In this work, the positive influence of phosphorus functionalities on the overall electrochemical stability of carbon materials has been demonstrated under different conditions. We show that the extent and selectivity of electroxidation in P-containing carbons are completely different to those observed in conventional carbons without P. The electro-oxidation of P-containing carbons involves the active participation of phosphorus surface groups, which are gradually transformed at high potentials from less-to more-oxidized species to slow down the introduction of oxygen groups on the carbon surface (oxidation) and the subsequent generation of (C*OOH)-like unstable promoters of electro-gasification. The highest-oxidized P groups (–C–O–P-like species) seem to distribute the gained oxygen to neighboring carbon sites, which finally suffer oxidation and/or gasification. So it is thought that P-groups could act as mediators of carbon oxidation although including various steps and intermediates compared to electroxidation in P-free materials.  相似文献   

10.
BACKGROUND: There exists now a widely held view that the methane storage capacity on an activated carbon is not related to any of the routinely determined properties of the adsorbent, such as surface area or micropore volume. This has been confirmed and a correlation pursued with other physical and/or chemical properties of both commercially available carbons and those prepared in the laboratory. Textural characteristics (from nitrogen adsorption isotherms at 77 K) considered were BET‐equivalent specific surface area, DR micropore volume and Horvath–Kawazoe micropore size distribution. Chemical properties were evaluated using Fourier transform infrared (FTIR) spectroscopy, thermal programmed decomposition (TPD) and Boehm titrations. Both kinetic and equilibrium methane adsorption experiments were performed at 273 and 298 K and up to 3.5 MPa. RESULTS: Using phosphoric acid to activate peach stones together with additional thermal treatment enabled the production of activated carbons with 137 v/v methane adsorption capacity at 298 K. CONCLUSIONS: The presence of acidic surface functional groups has a detrimental influence on methane uptake, due to the chemical inertness of the adsorbate and/or to pore blockage of the adsorbent. Basic surface functional groups (pyrone), together with a desirable pore size distribution centered at ca 0.8 nm, are thought to be responsible for improved methane adsorption capacity on such activated carbons. Copyright © 2009 Society of Chemical Industry  相似文献   

11.
The catalytic oxidation of Fe(II) species in aqueous solution by activated carbons with different degrees of surface oxidation is described. The parent activated carbon was oxidized with aqueous solutions of nitric acid or hydrogen peroxide, and submitted to thermal treatment at 373, 523 and 773 K. The activated carbons prepared were characterized by N2 adsorption and temperature-programmed desorption, and their catalytic behavior was determined by measuring the oxidation rate of Fe(II) to Fe(III) and the generation of hydrogen peroxide. Catalytic activity is a function of the nature of oxygen surface groups generated by oxidation.  相似文献   

12.
《Carbon》2002,40(15):2827-2834
The catalytic oxidation of Fe(II) species in aqueous solution by activated carbons with different degrees of surface oxidation is described. The parent activated carbon was oxidized with aqueous solutions of nitric acid or hydrogen peroxide, and submitted to thermal treatment at 373, 523 and 773 K. The activated carbons prepared were characterized by N2 adsorption and temperature-programmed desorption, and their catalytic behavior was determined by measuring the oxidation rate of Fe(II) to Fe(III) and the generation of hydrogen peroxide. Catalytic activity is a function of the nature of oxygen surface groups generated by oxidation.  相似文献   

13.
The catalytic wet air oxidation (CWAO) of methyl and dimethylamines was studied. A commercial peach stones activated carbon and its oxidized and reduced forms were used as catalysts. The observed catalytic behavior is related to the presence of oxygenated surface functional groups on the activated carbons. The N-compounds were selectively oxidized to nitrogen, water and carbon dioxide using these activated carbon catalysts. It is proposed that the quinonic surface groups are responsible for the selective catalytic oxidation of these amines. Carboxylic, lactonic and anhydride groups strongly adsorb the amine compounds producing inhibition of the catalytic activity of the activated carbon in the CWAO process.  相似文献   

14.
活性炭表面热氧化对其吸附二苯并噻吩性能影响   总被引:6,自引:4,他引:6       下载免费PDF全文
本文主要研究活性炭表面氧化对其吸附二苯并噻吩性能的影响。将活性炭在不同低温下氧化制得表面氧化活性炭,用静态吸附法进行了二苯并噻吩在初始及氧化活性炭上的吸附等温线,应用Langmuir方程对吸附等温线进行拟合,用漫反射红外谱(DRIFTS)表征活性炭表面含氧基团,用Boehm滴定测定活性炭表面官能团含量,讨论了活性炭表面化学性质对其吸附二苯并噻吩的影响。结果表明:活性炭表面酸性含氧基团对二苯并噻吩的吸附有重要影响,酸性含氧基团越多,其吸附量越大。低温气相氧化活性炭提高了活性炭表面酸性含氧基团,提高了其对二苯并噻吩的吸附。氧化温度越高,其表面含氧基团含量越多,其对二苯并噻吩的吸附量也越大。Langmuir吸附等温线可适用于描述二苯并噻吩在活性炭表面上的吸附。  相似文献   

15.
The interactions of nitrogen oxides with carbons differing in the chemical structure of surface functional groups were studied using in situ FTIR combined with the measurements of catalytic activity. Microporous carbon samples with similar pore size distribution were prepared from cellulose. The structure and coverage of adsorbates during reactions at temperatures between 295 and 573 K are determined by FTIR. No significant changes in NOx reaction with carbon surface were found by oxidation of the carbonized film. During the study of the reaction of NO/O2 mixture with carbons, the infrared absorption bands for the surface species formed are similar to the IR bands observed after the reaction of carbon samples with NO2. For both reactions, surface species, including C-NO2, C-ONO, C-NCO and anhydride structures are formed. Catalytic NOx reduction by carbons has been investigated in the temperature range 295-623 K in the flow reactor equipped with an FTIR gas analyzer. As the surface of carbon is exposed to NO2 gaseous NO is formed. The reduction of NO2 to N2 without the use of an externally supplied reductant can be achieved with microporous carbons. Significant NO2 conversion to N2 occurred at 623 K on both oxidized and non-oxidized carbons.  相似文献   

16.
《分离科学与技术》2012,47(8):1019-1025
Abstract

As-received commercial activated carbons do not adsorb noticeable amounts of water vapor at lower relative vapor pressures (r.v.p.). Following surface oxidation with nitric acid, moisture sorption capacity at lower r.v.p. increases 100-fold. Exchange of surface H+ ions of oxidized carbons by metal cations (Li, Na, K, Ca) brings about a further substantial increase in moisture sorption capacity. At lower r.v.p., water uptake on some of the cation exchanged samples is comparable to that on commercial zeolite molecular sieves. Following an adsorption run, moisture sorption capacity of ion-exchanged carbons can be fully restored upon outgassing at 140°C. This is in sharp contrast to the zeolite sieves which need to be heated to above 350°C to be completely regenerated.  相似文献   

17.
王赫  秦楠  郭鑫  郑俊生  赵基钢 《化工学报》2020,71(6):2735-2742
以浓硫酸和浓硝酸为氧化剂,采用超声氧化法对硬碳进行表面氧化处理,并研究其作为锂离子超级电容器负极材料的电化学性能。采用扫描电镜、X射线衍射和X射线光电子能谱等表征手段研究了超声氧化处理对硬碳形貌、结构以及表面含氧官能团相对含量的影响。采用恒电流充放电、循环伏安法及交流阻抗法等电化学测试手段对处理前后硬碳的电化学性能进行研究。结果表明:超声氧化处理能在硬碳表面引入适量的含氧官能团,添加额外的活性中心,提高电子迁移率,进而提高硬碳材料的电化学性能。半电池测试中,在2 A·g-1的高电流密度下,氧化硬碳的比容量是未处理硬碳的2倍,具有优秀的倍率性能。以氧化硬碳负极和活性炭正极制备出锂离子电容器,能量密度为37.6 W·h·kg-1,功率密度可达9415 W·kg-1,在1.0 A·g-1电流密度下,经过4000次充放电循环后,容量保持率为99.1%,具有良好的循环稳定性。  相似文献   

18.
The physicochemical properties, surface chemical structure and some catalytic properties of a series of carbons prepared by nitric acid oxidation of an activated carbon and subsequent heat treatment under vacuum and mild temperature conditions (423-573 K) were studied. The porous structure characteristics of the partially evacuated samples were estimated from low-temperature nitrogen adsorption data. The thermal analysis and the quantitative determination of surface functional groups by selective neutralization of bases and pH-metric titration were carried out. The dehydration of 2-methylpropan-2-ol was used as a test reaction. While gradual annealing in vacuum alters the surface only slightly, it does differentiate strongly the number and the acidic strength of the surface groups. Progressive heating under mild conditions removes mainly those surface groups that are located in macropores or on the outer surface of the carbon. According to TPD results, the decomposed surface groups are single carboxylic groups, as expected. The decomposition of single, strong carboxylic groups is accompanied by rearrangements of other carboxylic groups with the simultaneous formation of additional cyclic structures like anhydrides, lactones or lactols. Catalytic tests support our previous findings that oxidized carbons have a high dehydration activity. This activity is controlled not only by the number and the strength of acidic groups, but also by their accessibility. There exists an optimum concentration of surface acidic groups above which the activity decreases due to steric restrictions.  相似文献   

19.
Activated carbons have been prepared from jute stick by both chemical and physical activation methods using zinc chloride and steam, respectively. They were characterized by evaluating surface area, iodine number, pore size distribution, and concentration of surface functional groups. The chemically activated carbon largely featured micropore structure, while the physically activated carbon mainly featured macropore structure. The specific surface area of chemically and physically activated carbons was 2,325 and 723 m 2 /g, while the iodine number was 2,105 and 815mg/g, respectively. The concentration of surface functional groups was determined by Boehm titration method, which suggested that different types of surface functional groups are randomly distributed on chemical activated carbons, while it is limited for physical activated carbon. The microporosity along with surface functional groups provided a unique property to chemically activated carbon to adsorb Methylene Blue dye to a large extent. The adsorption of dye was also affected by the adsorption parameters such as adsorption time, temperature and pH. Comparatively, higher temperature and pH significantly facilitated dye adsorption on chemically activated carbon.  相似文献   

20.
Carbons prepared by charring cellulose in vacuum were oxidized under the conditions leading to the formation of acid or basic carbons. The reactions were followed with IR phothermal beam deflection spectroscopy. The oxidation of chars at temperatures leading to the formation of acid carbons resulted in the formation of several surface species to which acid properties may be ascribed. Some band assignments to definite surface structures were made. Spectra were recorded for the first time of high temperature carbons oxidized at the high temperatures leading to the formation of basic carbons, and the interconversion of acid and basic carbons could be followed. No oxygen-containing species to which basic properties could be attributed were observable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号