首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gamma-irradiation was used to produce freestanding, sterilized, cross-linked caseinate films and gels. Mechanical properties of gels and films and water vapor permeability of dried films were determined. Irradiated films were significantly ( p ≤0.05) more resistant to puncture and moisture. Also, gels were formed when protein solutions received radiation doses ≥16 kGy. The addition of CaCl 2 in the solution containing proteins, glycerol, and carboxymethylcellulose (base formulation) increased significantly the puncture strength for the films atirradiation doses ≥16 kGy. Sorbitol had the greatest plasticizing effect andsignificantly ( p ≤0.05) increased distance to puncture, while mannitoldecreased distance to puncture. Size-exclusion chromatography performed on the irradiated solutions of the base formulation showed that gamma-irradiation increased the molecular weight of calcium caseinate by 100 times; the molecular weight was ≥2×10 3 kDa. Films produced with base formulation were alsoimmersed in flasks containing 100mL of boiling water during 30 min forinsolubility measurements. Results showed that the proportion of the insolublefraction increased with the irradiationdose. Seventy percent of the irradiated films (32 kGy) remained insoluble after immersion in water at 100°C, 30 min and 20°C, 24 h. Water vapor permeability (WVP) of the base formulation films was reduced from 3.99±0.23 to 2.57±0.63 g.mm/m 2 .d.mmHg after irradiationtreatment. Microbial resistance of cross-linked films (base formulation)showed that 36% of N from calcium caseinate films was converted to soluble N after 60 d in presence of Pseudomonas aeruginosa .  相似文献   

2.
The objective of this work was to characterize the moisture sorption and water vapor permeation behavior of edible films made from sodium caseinate and chitosan for future applications as protective layers on foods. Glycerol was used as a plasticizer, and the films were obtained by a casting/solvent‐evaporation method. The moisture sorption kinetics and water vapor permeability (WVP) were investigated. The effect of the addition of glycerol on the WVP characteristics of the films was determined at 25°C with a relative humidity (RH) gradient of 0–64.5% (internal to external). Experimental data were fitted with an exponential function with two fitting parameters. WVP increased with increasing glycerol content in both films, chitosan samples being much more permeable than caseinate ones at any glycerol content. WVPs of sodium caseinate, chitosan, and chitosan/caseinate films with 28 wt % glycerol were also determined for two RH gradients, 0 to 64.5% and 100 to 64.5%, higher WVPs being measured at higher RHs. The moisture sorption kinetics of caseinate films prepared with various glycerol contents were determined by the placement of the films in environments conditioned at 20°C and 75% RH. Peleg's equation and Fick's second law were used to predict the moisture sorption behavior over the entire time period. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
Carbon nanotube (CNT) reinforced (0.05–0.5% by wt) polycaprolactone (PCL)‐based composites were prepared by compression molding. Addition of 0.2% CNT caused a 131% improvement of tensile strength (TS) of PCL films. The tensile modulus (TM) and elongation at break (Eb) of PCL were also significantly improved with the addition of CNT. The water vapor permeability of PCL was 1.51 g·mm/m2·day but 0.2% CNT containing PCL films showed 1.08 g·mm/m2·day. Similarly, the oxygen transmission rate (OTR) of PCL films was found to decrease with the addition of CNT. But, carbon dioxide transmission rate (CO2TR) of PCL film was improved due to incorporation of CNT. Effect of gamma radiation on PCL films and CNT reinforced PCL‐based composites were also studied. The TS of the irradiated (10 kGy) PCL films gained to 75% higher than control sample. The TS of the 0.2% CNT reinforced composite film was reached to 41 MPa at 15 kGy dose. The barrier properties of non‐irradiated and irradiated (10 kGy) PCL films and composites (0.2% CNT reinforced) were also measured. Both PCL films and composites showed lower values of WVP upon irradiation and indicated better water vapor barrier. The OTR and CO2TR of the irradiated (10 kGy) PCL films and composites were decreased compared to their counterparts. Surface and interface morphologies of the composites were studied by scanning electron microscopy. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
Abstract

Nonirradiated natural rubber latex (NRL) and irradiated (12 kGy) rubber latex were blended in ratios of 100:0, 85:15, 65:35, 50:50, 35:65, 15:85, and 0:100 (v/v) to improve properties of the rubber latex. The blends were irradiated using different irradiation doses (0–20 kGy) in the presence of a radiation vulcanization accelerator (RVA), normal butyl acrylate (n-BA). The physicochemical properties of the nonirradiated latex, irradiated latex, and blend films were determined after leaching with distilled water. It was observed that the tensile strengths of the blend films increases with an increase in the content of the irradiated proportion and radiation doses. The composition of the blends and the doses of radiation were optimized. The maximum tensile strength (31.41 MPa) was found for the 50:50 composition of the blend with a 5 kGy radiation dose. The 100:0 blends, when irradiated, give the highest tensile strength (27.69 MPa) with 12 kGy but a 15:85 nonirradiated blend gives the tensile strength of 26.18 MPa.  相似文献   

5.
Blend films of pigskin gelatin (GEL) and sodium caseinate (SCas) with boldo (B), guarana (G), cinnamon (C), or rosemary (R) extracts added were studied. SCas and extracts addition in blend films significantly increased the gloss and better UV barrier of GEL100 films. Extracts incorporation significantly decreased the rigidity and elongation of GEL100 films, which were significantly improved in GEL75:SCas25 blend films with extracts (EM = 295.69 ± 21.75 MPa and EB = 11.60 ± 3.43%). SCas addition not affected the TS parameter. The water vapor permeability of GEL100 films was reduced in blended films with extracts, showing the lowest value for GEL75:SCas25 + R (0.99 ± 0.07 × 1010 g s?1 m?1 Pa?1). FTIR and microstructure analyses showed good compatibility for all components. The antioxidant activity of GEL100 was significantly increased with SCas and extracts addition (GEL50:SCas50 + R = 4.31 ± 0.11 mM ), suggesting the application of these films as an active food packaging material. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44467.  相似文献   

6.
The aim of this study was to evaluate the effects of candelilla (CAN) or carnauba wax (CAR) incorporation on functional properties of edible sodium caseinate (CAS) films. Glycerol and Tween-80 were used as the plasticizer and the emulsifier, respectively. The results showed that the incorporation of waxes increased film opacity, total color differences (∆E), and mechanical resistance and reduced film lightness, water vapor permeability (WVP), and elongation at break. Scanning electron microscopy showed heterogeneous structure of emulsion films with regular distribution of lipid particles. A different internal arrangement was observed as a function of the film composition with both layered and incorporated film structure. Films containing candelilla wax exhibited more regular lipid reorganization, which resulted in better water vapor barrier efficacy and mechanical resistance in comparison to control films. The presence of Tween-80 resulted in better dispersion of lipid particles in film-forming solutions and lower water solubility, lightness, film opacity, and water vapor permeability, whereas the total color differences (∆E) were significantly larger and the improvement in mechanical properties was also achieved.  相似文献   

7.
The electron beam-initiated surface modification of films prepared from various blends of low-density polyethylene (LDPE), ethylene vinyl acetate (EVA), and ditrimethylol propane tetraacrylate (DTMPTA) was carried out over a range of radiation doses (20-500 kGy) and concentrations of DTMPTA. The films were characterized by Fourier transform infrared-attenuated total reflectance (FT-ATR) spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), contact angle measurements, and peel adhesion. The printability of the films was also measured. FT-ATR and XPS revealed that the surface polarity of the films made from a 50 : 50 blend of LDPE and EVA increased up to a radiation dose of 100 kGy, compared with the unirradiated sample. The polarity decreased after 100 kGy radiation. Surface pitting and roughness were observed in the SEM photomicrographs of the same films, irradiated at higher radiation doses. Higher values of the surface energy were obtained at 100 kGy for the samples without DTMPTA and for the samples containing 3 wt% DTMPTA. Excellent printability was observed for all the films irradiated above an irradiation dose of 20 kGy. The data on the printability and peel adhesion of the irradiated films could be explained by surface energy, XPS, and SEM results.  相似文献   

8.
Zein is a hydrophobic protein produced from maize. Biodegradable zein films without additional reagents were prepared using various controlled drying conditions. The zein films were transparent. Mechanical properties (tensile strength and puncture strength), gas permeability, and water vapor permeability (WVP) of the zein films were measured. The tensile strengths of the zein films were between 7 and 30 MPa and the puncture strengths between 37 and 191 MPa. The zein films had higher oxygen permeability than carbon dioxide permeability. The lowest WVP of the zein film was 0.012×10−9 g·m/m2·s·Pa. We found differences in the WVP between the sides of the zein films; i.e., the air side of the zein film had a higher WVP than the basal side of the zein film when the films were exposed to high humidity during testing. This indicates a relationship between the WVP of the zein film and the contact angle of the zein film. The mechanical properties of the zein film depended on the drying conditions during preparation. Zein films with various useful physical mechanical properties were produced.  相似文献   

9.
Porous nanocomposite films based on polypropylene (PP) and titanium dioxide (TiO2) nanoparticles were prepared by melt extrusion followed by uniaxial stretching. The effects of drawing temperature, extension rate, stretching ratio and composition of the base films on the final properties and microstructure of the stretched films were studied. Water vapor permeability (WVP) results showed a significant decrease in permeability of the films stretched at temperatures higher than 60 °C. Porosity, pore size and water vapor transmission rate in the porous nanocomposite films had a direct relation with nanoparticle content, extension rate and stretching ratio. Study of the morphology of the stretched films, using SEM, revealed that the pores form due to PP/TiO2 interfacial debonding at low stretching ratios. Higher stretching ratios cause an enlargement of the pores and the formation of a PP fibril structure parallel to the stretching direction. Quantification of dye adsorption revealed that the quantity of adsorbed dye increased with porosity and surface area of the pores. © 2014 Society of Chemical Industry  相似文献   

10.
Protein films are used as effective lipid, oxygen, and aroma barriers at moderate relative humidity conditions. However, they perform poorly as moisture barriers. The introduction of crosslinks within or between protein chains by enzymatic or chemical modification has been proposed as an alternative means to achieving a stronger polymeric matrix structure, which would result in better functional film properties. In this article, we report the preparation and characterization of sodium caseinate (SC) films crosslinked by glutaraldehyde (GTA) or heat. The crosslinking density increased with GTA content. The thermal stability and tensile modulus and strength increased with GTA content, although films with a low crosslinking density exhibited lower properties than the uncrosslinked sample. Unexpectedly, water vapor permeability and absorption also increased with crosslinking density. The crosslinking of SC was also induced by simple heating. The resulting films showed enhanced thermal, mechanical, and barrier properties compared to the unmodified SC films and even the GTA‐crosslinked samples. GTA crosslinking was unable to reduce the high hydrophilicity of the SC films. Thermally induced crosslinking was revealed to be a valid alternative for improving the properties of SC films, without the inherent complications associated with the use of a chemical crosslinking agent. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
Antimicrobial films were prepared with oxidized and acetylated corn starch–sodium alginate by incorporating sodium dehydroacetate or rosemary extract. Films incorporated with sodium dehydroacetate ≥ 0.1% or rosemary extract ≥ 0.3% had an anti‐Escherichia coli effect. Aspergillus niger could be effectively inhibited by the incorporation of sodium dehydroacetate ≥ 0.3%. Rosemary extract showed no inhibitory effect on Aspergillus niger. Sodium dehydroacetate and rosemary extract reduced the tensile strength and elongation at break, and increased the water vapor permeability of the films. Sodium dehydroacetate made the films more greenish–yellow with the increase of sodium dehydroacetate concentration. The color of the films became darker and more reddish–yellow as rosemary extract was increased. Fourier transform infrared (FTIR) spectra analysis revealed that sodium dehydroacetate and rosemary extract reduced starch crystallinity. The surface of the films became rougher as a result of an addition of sodium dehydroacetate and rosemary extract. These findings had potential applications in prolonging food shelf life based on different needs. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
采用溶液流延法以豌豆淀粉(PS)和聚乳酸(PLA)为原料制备了豌豆淀粉/聚乳酸(PS/PLA)双层薄膜。通过对双层薄膜的吸水性、溶解性、水蒸气透过性、拉伸性能、表面形貌等进行测试,研究了薄膜的力学性能、疏水性能以及水蒸气阻隔性能。结果表明:随着双层膜中聚乳酸层的比例增加,双层薄膜的吸水性、溶解性和水蒸气透过性逐渐降低,拉伸强度和拉伸模量逐渐增加,断裂伸长率逐渐下降,表明水蒸气阻隔效果明显,增加了膜的韧性,降低了膜的强度。当PLA和PS的质量比为50:50时,PS/PLA双层膜的拉伸强度为(13.47±0.75)MPa,拉伸模量为(0.848±0.002)GPa;断裂伸长率为(16.11±0.16)%,水蒸气透过系数为0.27×10-10 g·cm/(cm2·s·Pa)。  相似文献   

13.
To study the radiation effect on the physical, thermal, mechanical and degradable properties of biodegradable polymer Bionolle (chemosynthetic polyester poly(1,4-butylene succinate)), Bionolle films prepared by compression molding process and were irradiated with electron beam (EB) radiation of different doses. Gel content was found to increase with increase of radiation dose. Tensile strength of Bionolle was enhanced when Bionolle film was exposed under 20 kGy radiation. The loss of tensile strength of both unirradiated and irradiated Bionolle is 70% and 8% due to thermal aging at 70°C for 30 days. Both irradiated and unirradiated films of Bionolle were subjected to different degradation test in compost (soil burial), enzyme and storage degradation both in outdoor and indoors conditions. The loss of weight due to soil (compost) degradation test decreased with increase of radiation dose. The loss of weights of irradiated samples were found to be very less within the first three months of compost degradation. After 120 days, tensile strength of the Bionolle films irradiated at 20 kGy and 100 kGy were 68 MPa and 40 MPa, respectively, compared to the value (30 MPa) of the unirradiated Bionolle samples. Loss of tensile strength of irradiated Bionolle due to storage degradation like in roof, ground and indoors was minimum compared to unirradiated Bionolle. The weight loss due to enzymatic degradation was found to be decreased with increase of radiation dose. The tensile strength of jute reinforced Bionolle composites (23 wt.-% jute content) irradiated at 20 kGy was found to be higher (22%) than that of an unirradiated composite.  相似文献   

14.
The aim of this research was to investigate the effect of rapeseed oil concentration (1–3% w/w) on the water vapor, oxygen and carbon dioxide permeability, water vapor sorption and surface properties of whey protein isolate emulsion‐based films. The water contact angle as affected by oil content, film side and time was analyzed. The effect of temperature (5 and 25°C) on the water vapor permeability (WVP), water vapor sorption kinetics and diffusion coefficient was also studied. The results showed that the incorporation of a lipid phase to whey protein film‐forming solutions was able to decrease the WVP, water hydrophilicity (increasing water contact angle) and water transfer of whey protein films. However, the films containing oil were more permeable to oxygen and carbon dioxide. Significantly higher values of WVP and diffusion coefficient were obtained at 5°C than at 25°C, indicating that storage temperature should be taken into account when designing the composition of edible films and coatings for food applications. POLYM. ENG. SCI., 59:E375–E383, 2019. © 2018 Society of Plastics Engineers  相似文献   

15.
The role of urea as an additive on the physico-mechanical properties of radiation vulcanised natural rubber latex (RVNRL) films was investigated. RVNRL films were prepared by the addition of urea with the concentration range 0–1.0 phr (parts per hundred rubber) and irradiated with various radiation doses (0–20 kGy). The concentration of urea and radiation doses were optimised and found to be 0.5 phr urea and 12 kGy radiation dose. Tensile strength, tear strength and cross-linking density of the rubber films increased with increasing the concentration of urea as well as radiation doses. The tensile and tear strengths of the films enhanced by 39 and 41%, respectively, at the optimum conditions. Elongation at break, permanent set and swelling ratio of the films decreased with increasing urea concentration and radiation doses until they attained approximately constant values.  相似文献   

16.
Poly(lactic acid)/hydroxyapatite (PLA/HAP) nanocomposite films with various compositions, 2 ? 70 parts HAP per 100 of the PLA polymer (pph), were made via the solution casting method. Transmission electron microscopy images of the PLA/HAP films exhibited spherical particles in the size range from nearly 10 nm to 100 nm dispersed within the polymeric matrix. Fourier transform infrared spectra of the nanocomposites revealed an interaction between PLA and HAP nanoparticles by carbonyl group peak shift. Incorporation of HAP nanoparticles in the PLA matrix stimulated crystal growth verified by differential scanning calorimetry. The films irradiated with γ‐rays at a dose of 30 kGy also showed an increase in crystallinity. The X‐ray diffraction patterns of the irradiated PLA exhibited two new peaks at around 16° and 19°, assigned to the α crystalline phase of PLA; these were absent in the unirradiated nanocomposites. Significant ductile behavior was observed in both irradiated and unirradiated PLA nanocomposites containing 2 and 10 pph of HAP. However, the irradiated nanocomposites had higher tensile strength. © 2013 Society of Chemical Industry  相似文献   

17.
The oxygen and water vapor permeability at high relative humidity was studied for composite films formed by incorporation of three different bentonites (MMT) into an ethylene‐modified, water‐soluble poly(vinyl alcohol), EPVOH. The oxygen permeability decreased linearly with an increased addition of hydrophilic MMTs. X‐ray diffraction and Fourier transform infrared spectroscopy suggested a homogeneous distribution in the thickness direction with disordered and probably exfoliated structures for hydrophilic MMTs. In contrast, organophilic modified clay showed an intercalated structure with the clay preferentially located at the lower film surface, a combination which was however efficient in reducing the water vapor‐ and oxygen permeabilities at low addition levels. Composite films of EPVOH and Na+‐exchanged MMT resulted in high resistance to dissolution in water, which was ascribed to strong interactions between the components resulting from matching polarities. Annealing the films at 120°C resulted in enhanced resistance to water dissolution and a further reduction in oxygen permeability. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42229.  相似文献   

18.
Plasticized poly(3‐hydroxybutyrate) (PHB) films were obtained by solvent casting. The effects of two different additives on several properties of PHB have been examined, utilizing tributyrin and poly[di(ethyleneglycol) adipate] (A). Based on changes in the glass transition temperature (Tg) and cold crystallization temperature of host PHB, the two components are miscible with PHB and they can act as plasticizers. Binary and ternary blends were obtained by adding both plasticizers separately or together, respectively. The effect of plasticizer addition on the optical transparency, water vapor permeability, and tensile properties of the films was studied. It was found that the blends remain transparent and water vapor permeability was maintained constant until a 20 wt % of plasticizer content. Plasticizing effect was corroborated and it depended on the plasticizer percentage. Binary blends had an increased plasticity, in concordance with Tg diminution of PHB. Although ternary blends presented Tg diminution, mechanical properties were not improved probaby due to strong interactions between plasticizers. Finally, binary and ternary blends presented enhanced properties, causing an increment on processability. A correct knowledge between the formulation of the film and the role played by each component could allow getting custom films. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46016.  相似文献   

19.
This research was based on the study of the effects of H12MDI-1, 4BD PU soft segments on the physical properties and water vapor permeability of films cast from solvent evaporation or wet coagulation method. The soft segments studied included polyether, polyester, and polycaprolactone polydiols. The NCO/OH mol ratios of prepolymer were prepared by 2, 3, 4, 5, and 8, respectively. The chain lengths of the soft segments used were: PTMG of molecular weights 650, 1000, 2000, and 2900; PBA of 1000, 2000, and 3000. The results revealed that the polyether-based PU cast films had lower Tgs than the polyester-based PU films. In general, the polyether-based PU films shows the characters of higher water vapor permeability, lower breaking elongation, and higher breaking strength. Films with higher molecular weight soft segments in the polymer chains exhibited lower Tgs, lower breaking strength, higher breaking elongation, and higher water vapor permeability. As the hard segment contents were increased, the films exhibited higher Tgs. Films with higher hard-segment ratios had the highest breaking strength but the water vapor permeability, on the other hand, became lower. Films cast from the solvent evaporation method had higher breaking strength and higher breaking elongation but lower water vapor permeability than films cast from the wet coagulation method. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
Low‐density polyethylene‐g‐poly(acrylic acid) membranes were prepared by the direct radiation grafting of aqueous acrylic acid solutions (containing Mohr's salt) onto low‐density polyethylene films and were irradiated at two different irradiation doses (2 and 3 Mrad) at a dose rate of 0.02 Mrad/h. Two series of polyethylene‐g‐poly(acrylic acid) membranes with 100 and 150% grafting were obtained. The free carboxylic acid groups in the grafted films were converted into the corresponding acrylates by reactions with different metal salts. The swelling (water uptake) and dialysis permeability of glucose and urea through the grafted membranes in different metal‐ion forms were investigated. The prepared membranes showed good permeability to both solutes, which increased as the hydrophilicity of the membrane increased. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 10–14, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号