首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
目的 快速、准确预测微晶玻璃在研磨加工过程中的亚表面损伤状况,制定合理的加工工艺。方法 通过建立微晶玻璃的离散元模型,仿真分析了研磨压力等研磨工艺参数对工件亚表面损伤的影响规律,并采用角度抛光法对研磨后微晶玻璃的亚表面损伤状况进行了实验验证。结果 采用W14金刚石固结磨料垫研磨微晶玻璃,当研磨压力为10 kPa时,工件亚表面裂纹层深度为1.75μm,当研磨压力降低至3.5 kPa时,工件亚表面裂纹层深度为1.38μm;随着研磨压力的降低,亚表面微裂纹数量减少。研磨残余应力层分布深度大于微裂纹层的,且在微裂纹的尖端存在较大的残余拉应力。结论 角度抛光法得到的亚表面裂纹层深度与仿真结果一致,偏差范围为-10.87%~11.29%,残余应力仿真结果与试验结果的偏差为7.89%。离散元仿真能够比较准确地预测固结磨料研磨微晶玻璃的亚表面损伤状况,为其研磨抛光工艺参数的制定提供了理论参考依据。  相似文献   

2.
为了满足蓝宝石晶片高效低损伤的加工要求,采用亲水性固结磨料研磨垫研磨蓝宝石晶片的工艺,研究基体中碳化硅粒度尺寸、基体类型、金刚石粒度尺寸及研磨液中磨料4个因素对材料去除率和表面粗糙度的影响,并综合优化获得高加工效率和优表面质量的工艺参数。实验结果表明:基体中碳化硅粒度尺寸为10 μm、基体类型为Ⅱ、研磨垫采用F公司粒度尺寸为35~45 μm的金刚石、研磨液中磨料的粒度尺寸为5 μm的碳化硅为最优工艺组合,亲水性固结磨料研磨蓝宝石的材料去除率为431.2 nm/min,表面粗糙度值为Ra 0.140 2 μm。   相似文献   

3.
金刚石固结磨料垫研磨蓝宝石晶片时,因磨屑细小导致研磨垫自修整能力严重不足,制约了其工业应用。本实验尝试用向研磨液中添加碳化硅颗粒的办法,辅助磨屑改善研磨垫的自修整能力。分别制备了不含磨料和含金刚石磨料(粒度尺寸为20~30 μm)的研磨垫,比较其在不同研磨条件下的材料去除率和研磨后工件表面形貌,探索研磨液中碳化硅颗粒的作用机制。结果表明:研磨液中添加的碳化硅颗粒加快了研磨垫基体的磨损,有利于亚表层金刚石颗粒的出露,实现了研磨垫的自修整过程,材料去除速率明显提高,提高近14倍。   相似文献   

4.
光学工件研磨后亚表面损伤层深度是确定其抛光加工余量的重要依据。采用三种典型的光学材料亚表面损伤层深度测量方法(BOE分步腐蚀法、BOE差动腐蚀法、磁流变抛光斑点法),测量比较了固结磨料研抛垫(FAP)研磨后K9玻璃的亚表面损伤层厚度;建立了亚表面损伤模型,分析比较测量误差产生的原因。结果表明:在实验条件下,BOE分步腐蚀法测量精度优于其他两种方法;BOE分步腐蚀法、磁流变抛光斑点法、BOE差动腐蚀法的测量精度分别约为0.1nm、17nm、200nm;亚表面损伤层总深度与其裂纹深度之间存在对数关系。  相似文献   

5.
考虑磨粒轨迹和研磨垫弹性的影响,分析磨粒间距的概率密度函数,计算磨粒轨迹重叠率;引入与研磨参数相关的修正因子,并确定其值,修正固结磨料研磨K9玻璃表面粗糙度公式,实验验证修正模型。结果表明:修正后,K9玻璃表面粗糙度模型计算值与实验值误差控制在4%以内。显著提高K9玻璃表面粗糙度的预测精度,有效指导其研磨方案设计,提高加工效率。  相似文献   

6.
固结磨料研磨工艺具有高加工效率及清洁加工等突出优点。采用正交实验法,研究了转速比、研磨压力、研磨液流量等参数对固结磨料研磨K9玻璃的材料去除率和三维轮廓表面粗糙度Sa的影响。结果表明:研磨的最佳工艺参数组合为:转速比为145/150,研磨压力为0.055 MPa,研磨液流量为60mL/min。在该工艺参数组合下,材料去除速率达到3186 nm/min,Sa值达到19.6 nm。  相似文献   

7.
目的 通过优化工艺参数,充分挖掘固结磨料研磨加工的优势.方法 采用固结磨料研抛垫对石英玻璃进行研磨,以材料去除率(MRR)和表面粗糙度(Ra)为评价指标,采用3因素3水平的响应曲面法,探索工件转速、研磨压力、研磨液流速三个工艺参数对固结磨料垫加工特性的影响规律.建立三个工艺参数作用下的MRR模型和Ra模型,结合响应曲面及其等高线,获得工艺参数变量两两复合的影响规律和各目标下的最优工艺参数.最后,对最优工艺参数进行实验验证.结果 实验结果及其分析表明,以最大材料去除率为目标的最佳工艺参数为:转速90 r/min,压力20.685 kPa,研磨液流速60 mL/min.以最小表面粗糙度为目标的最佳工艺参数为:转速100 r/min,压力20.685 kPa,研磨液流速80 mL/min.最优工艺的加工性能预测值为34.5 nm/min和38.5 nm,验证实验结果为37.6 nm/min和39.4 nm,二者的误差值在合理范围内.结论 研抛工艺参数的响应面模型具有良好的预测能力,预测误差很小,最优工艺参数下,工件表面平整光滑,没有明显的凹坑和粗大划痕.  相似文献   

8.
固结磨料研磨垫的表面形态与其加工性能有着密切关系,为更好地了解固结磨料研磨垫表面形态,尤其是研磨垫中的金刚石、孔隙、金刚石脱落坑等的分布特征,提出一种基于深度学习的固结磨料研磨垫表面形态分析方法。首先,利用徕卡DVM6数字显微镜及其配套软件获取固结磨料研磨垫表面图像;然后,采用python3+OpenCV对图像进行预处理,并利用标注软件Labelme对图像进行标注,用于后续的训练和测试;最后,运用深度学习框架Tensorflow搭建Mask R-CNN模型。结果表明:Mask R-CNN模型能对单一固结磨料垫表面图像中的多目标进行有效分割与识别,其主要评价指标平均准确率达到78.9%,达到了图像识别的主流水平。  相似文献   

9.
氟化钙晶体的高效精密研磨加工是实现其超精密抛光加工的前提。采用单晶金刚石和聚集体金刚石磨料制备固结磨料垫(FAP),对比研究其研磨加工性能,探索不同种类的金刚石磨粒在固结磨料研磨垫自修整过程中的作用机理。结果表明:采用聚集体金刚石磨料制成的FAP研磨效率明显高于单晶金刚石FAP的,且其材料去除率更稳定,同时聚集体金刚石FAP的自修整能力要优于单晶金刚石FAP的。在10 kPa压力下,采用初始粒径为3~5 μm的聚集体金刚石FAP研磨氟化钙晶体,其材料去除率达13.0 μm/min, 表面粗糙度值Ra为130.0 nm。   相似文献   

10.
结合目前实验室的实际加工条件建立了用FAP(fixed abrasive pad,固结磨料抛光垫)研磨抛光时磨粒嵌入工件表面的切深数学模型,提出了当不考虑抛光垫的弹性变形且FAP中添加的磨粒粒径范围在10~14μm之间时,磨粒压入工件的最大深度值在0.4μm左右。当考虑抛光垫的弹性变形时,磨粒嵌入工件的深度普遍减小,从而使得加工后工件的表面质量得到明显提高,主要表现在加工后工件表面划痕数量和划痕深度大大减小,表面粗糙度值降低。为了验证模型的正确性,在研磨抛光实验过程中收集了大量磨屑并对其拍摄大量SEM照片,通过图像处理和分析证明了在加工产生的磨屑中,91%以上(均值96.5%)的磨屑厚度小于0.3μm,非常好地吻合了本文中所建立的切深数学模型。  相似文献   

11.
目的提高Si C单晶片的材料去除率,改善加工后的表面质量。方法进行研磨液试验,利用极差法得到研磨液的最优配比和研磨液成分中影响去除率的主次因素顺序;对主要影响因素进行单因素试验并考察对材料去除率的影响。结果研磨液的质量为50 g,最优配方为:助研剂、分散剂、增稠剂、润滑剂、磨料A、磨料B的质量分别为9,7,5,3,3,5 g,其余为调和剂,磨料A和磨料B的粒度均为W28。结论影响材料去除率的主要因素为磨料粒度,粒度越大,材料去除率越高。  相似文献   

12.
目的 提出一种光学玻璃机械加工亚表面损伤深度的检测方法,给光学玻璃超精密抛光的加工深度提供参考依据。方法 首先通过实验分析K9玻璃研磨试样在化学蚀刻过程中亚表面裂纹的结构变化,采用探针式粗糙度仪检测化学蚀刻表面的裂纹深度,并探讨探针半径和化学蚀刻时间对裂纹深度测量结果的影响,建立以蚀刻表面峰谷粗糙度(PV)表征亚表面裂纹深度的测量条件。然后利用激光共聚焦显微镜检测化学蚀刻表面PV粗糙度,确定光学玻璃的亚表面裂纹深度。最后采用截面抛光法直接检测光学玻璃的亚表面裂纹深度,验证上述两种检测方法的可靠性。结果 以蚀刻表面PV粗糙度表征亚表面裂纹深度的测量条件为,测量介质须在蚀刻表面裂纹开始融合之前有效探测至裂纹底部。针对W18和W40磨粒研磨的K9玻璃试样,采用激光共聚焦显微镜检测蚀刻表面PV粗糙度方法测得的两种试样裂纹深度为12.82 μm和20.45 μm,直接测量方法的测量结果为12.50 μm和19.34 μm。两种方法测量结果的偏差分别为2.56%和5.74%,一致性较好。结论 基于化学蚀刻和激光共聚焦显微镜检测光学玻璃亚表面损伤深度的方法不受表面裂纹宽度限制,满足以蚀刻表面PV粗糙度表征亚表面损伤深度的测量条件,且对试样损伤较小,提高了光学玻璃亚表面损伤深度的测量效率和结果可靠性。  相似文献   

13.
目的 通过分子动力学(MD)模拟,获得双金刚石磨粒抛光单晶Si的去除机理.方法 采用一种新的单晶硅三体磨粒抛光方法,测试双磨粒的抛光深度和横向/纵向间距对三体磨粒抛光的影响,从而获得相变、表面/亚表面损伤等情况,并获得抛光过程中温度及势能的变化情况.结果 对比抛光深度为1、3 nm时配位数的情况,发现抛光深度为1 nm...  相似文献   

14.
袁巨龙  张韬杰  杭伟  凌洋  王洁  赵萍 《表面技术》2019,48(10):349-354
目的 实现钽酸锂材料的高效、高质量、低成本加工。方法 选择合适的添加剂作为辅料,利用树脂结合剂将3000#的金刚石磨料通过配混料、固化、压实、修整等步骤,制成金刚石固结磨料盘。以加工过程中钽酸锂工件的材料去除率、表面形貌以及粗糙度等作为评价指标,在相同粒径条件下,用游离磨料、固结磨料磨盘对钽酸锂晶片进行加工,对比加工结果。结果 在压力为4 kPa、研磨盘转速为140 rad/min的条件下,3000#金刚石游离磨料铸铁盘研磨Y-36°钽酸锂晶片10 min后,材料去除率为37.89 μm/h,表面粗糙度Sa由420 nm改善至233.308 nm,但是晶片表面出现深划痕,从而导致易破碎,且有少量磨粒残留在钽酸锂晶片上。而在相同加工条件下,采用3000#金刚石固结磨料盘研磨Y-36°钽酸锂晶片10 min后,材料去除率为66.19 μm/h,表面粗糙度Sa降低至97.004 nm,且晶片表面划痕较浅,无磨粒残留在钽酸锂晶片上。结论 采用固结磨料盘加工后的表面粗糙度比游离磨料加工后的表面粗糙度更低,表面形貌更好,材料去除率更高,达到了钽酸锂晶片精研的加工效率和表面质量。同时固结磨料盘研磨LT晶片时,其表面粗糙度随压力、转速增大而减小,材料去除率随压力、转速增大而增大。  相似文献   

15.
目的通过改变固结磨料球的基体和磨料特性,研究氟化钙晶体的摩擦磨损性能,为超精密加工中研磨抛光氟化钙晶体固结磨料垫的选择提供指导。方法基于固结磨料加工技术制备固结磨料球,并与氟化钙晶体对磨。研究固结磨料球的磨料种类(金刚石和氧化铈两种磨料)、基体硬度、磨粒粒径对摩擦系数、划痕截面积、划痕处粗糙度的影响。结果金刚石磨料对磨的晶体表面划痕截面积S=480μm2,划痕处粗糙度Ra=85.3 nm,摩擦系数的平均值μ=0.537;氧化铈对磨磨料的S=307μm2,Ra=74.7 nm,μ=0.543。与氧化铈相比,金刚石磨料对磨的晶体表面产生划痕截面积、划痕处的粗糙度均较大,摩擦系数达到稳定的时间短,且摩擦系数的平均值较小。随着基体硬度增大,产生的划痕截面积逐渐增大。当基体硬度适中时(Ⅲ型基体),划痕截面积趋于稳定,S稳定在450μm2左右,此时划痕处粗糙度值也最小,为85.8 nm。在基体Ⅲ、Ⅳ两处,划痕截面轮廓的对称性较好。随着基体硬度增加,摩擦系数达到稳定的时间逐渐减小,动荡幅度也减小,但摩擦系数平均值增大。随着磨粒粒径增大,划痕截面积和划痕处的粗糙度值均增大,摩擦系数达到稳定的时间增加,且摩擦系数平均值增大。结论在选择固结磨料垫加工氟化钙晶体时,应选择金刚石磨料和基体Ⅲ,而磨粒粒径则需根据材料去除率和表面质量的要求做出相应选择。  相似文献   

16.
单晶高温合金损伤与断裂特征研究   总被引:1,自引:0,他引:1  
研究了单晶高温合金在持久、拉伸和低周疲劳条件下的损伤与断裂特征。结果表明:单晶合金高温持久微观断裂方式为沿原始微孔洞扩展的微孔聚集型断裂,中温持久微观断裂方式为微孔聚集型断裂与滑移剪切断裂共存的混合型断裂;高温拉伸首先在内部以微孔聚集型模式开裂,最后阶段以滑移剪切的方式发生断裂,微孔聚集型断裂过程占主要地位,中温拉伸以纯滑移剪切的方式发生断裂,断口由一个平面组成;低周疲劳断裂由裂纹萌生、裂纹稳定扩展和裂纹失稳扩展3个阶段组成。断口呈现多源开裂特征,疲劳裂纹一般萌生于表面。疲劳裂纹扩展初期断口基本与主应力方向垂直,随着疲劳裂纹扩展,断口表现为与主应力约成45°的平面特征。  相似文献   

17.
目的实现玻璃材料的高效高质量低成本抛光。方法选择不同添加剂作为辅料制作固着磨料抛光磨具,阐明制作工艺流程、添加剂辅料配方及比例、固着磨料磨具对材料硬度、剪切强度等性能的影响。以工件材料去除率、表面质量以及磨耗比等作为评价指标分析不同添加剂辅料对加工效果的影响,并通过等效系数优化方法确定添加剂辅料的最优配方。结果碳化硅与钼酸铵可增加磨具的硬度和剪切强度,磨具中加入适量氧化铝可有效提高工件表面质量。结论固着磨料抛光磨具的添加剂辅料最优配方为:10.6%(质量分数)4000#Al2O3和2%(质量分数)10000#SiC。  相似文献   

18.
目的 探究金刚石颗粒的一次粒径对固结聚集体金刚石磨料垫磨损的影响规律,提高固结磨料垫的自修整、加工性能及经济耐用度。方法 选择14、8、5、1 μm等4种粒度的金刚石颗粒,采用烧结法制备聚集体金刚石磨料,并将其用于制备固结聚集体金刚石磨料垫。在CP-4抛光测试系统平台上开展研磨试验,在线获取加工过程中的力信号和摩擦因数。对比4种粒径的固结聚集体金刚石磨料垫的磨损速率、研磨比、研磨前后磨料垫的微观形貌、碎屑的形貌及尺寸分布,分析固结磨料垫的磨损过程及其演变规律。结果 随着金刚石颗粒粒径的增大,固结聚集体金刚石磨料垫的磨损速率由0.2 μm/min(金刚石颗粒为1 μm)增加到3.5 μm/min(金刚石颗粒为14 μm),研磨比由2.02增加至14.33。大粒径(≥5 μm)的固结磨料垫研磨后,表面仍有锋利的金刚石微切削刃,研磨过程中的切向力和摩擦因素保持稳定,固结聚集体金刚石磨料垫的磨损形式以金刚石颗粒的脱落为主;超细粒径(≤1 μm)固结磨料垫表面的金刚石颗粒出现堵塞现象,并且研磨过程中的切向力和摩擦因数持续下降。结论 随着金刚石颗粒的一次粒径增大,固结聚集体金刚石磨料垫的磨损速率增加,自修整能力、材料去除能力和加工过程稳定性得到提升,进入稳定磨损期的时间缩短。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号