首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A protective film has been formed on the surface of carbon steel in aqueous environment using a synergistic mixture of an environment-friendly inhibitor, aspartic acid, and Zn2+. The synergistic effect of aspartic acid (AS) in controlling corrosion of carbon steel has been investigated by gravimetric studies in the presence of Zn2+. The formulation consisting of AS and Zn2+ has an excellent inhibition efficiency. The results of potentiodynamic polarization revealed that the formulations are of mixed-type inhibitor. Impedance studies of the metal/solution interface indicated that the surface film is highly protective against the corrosion of carbon steel in the aqueous environment. X-ray photoelectron spectroscopic analysis of the protective film showed the presence of the elements iron, nitrogen, oxygen, carbon, and zinc. The spectra of these elements in the surface film showed the presence of oxides/hydroxides of iron(III), Zn(OH)2, and [Fe(III)/Fe(II)–Zn(II)-AS] complex. Further, surface characterization techniques such as Fourier transform infrared spectroscopy, scanning electron microscopy, and atomic force microscopy are used to ascertain the nature of the protective film formed on the carbon steel surface.  相似文献   

2.
The corrosion inhibition effect of carbon steel in aqueous solution was using a synergistic mixture of an environmentally friendly inhibitor system phosphoserine (PS) and Zn2+ using gravimetric studies, potentiodynamic polarization, and electrochemical impedance studies. Potentiodynamic polarization studies showed that the inhibitor system is a mixed type inhibitor. Electrochemical impedance studies of the metal/solution interface indicated that the surface film is highly protective against the corrosion of carbon steel in the aqueous solution. X-ray photoelectron spectroscopic analysis of the protective film exhibited the presence of the elements viz., iron, phosphorus, nitrogen, oxygen, carbon, and zinc. The chemical shifts in the binding energies of these elements inferred that the surface film is composed of oxides/hydroxides of iron, Zn(OH)2, and [Fe(II)/(III)-Zn(II)-PS] complex. Further, the surface examination techniques viz., FTIR, SEM, and AFM studies confirm the formation of an adsorbed protective film on the carbon steel surface. Based on the results obtained, a suitable mechanism of corrosion inhibition is presented.  相似文献   

3.
The inhibition efficiency (IE) of an aqueous extract of white flower, namely, Hibiscus rosa-sinensis Linn., in controlling corrosion of carbon steel immersed in an aqueous solution containing 60 ppm of Cl-has been evaluated by the mass loss method. The flower extract (FE) shows good IE. In the presence of Zn2+, excellent IE is shown by the flower extract. A synergistic effect exists between the flower extract and Zn2+. The mechanistic aspects of corrosion inhibition have been investigated by polarization study and AC impedance spectra. Polarization study reveals that the formulation consisting of flower extract and Zn2+ functions as a mixed inhibitor. AC impedance spectra reveal that a protective film is formed on the metal surface. The active principle in the flower extract is quercetin-3-O-glucoside. This has been confirmed by UV-visible absorption spectra. The protective film formed on the metal surface has been analyzed by FT-IR and AFM spectra. It is found that the protective film consists of Fe2+-quercetin-3-O-glucoside complex and Zn(OH)2.  相似文献   

4.
A new family of nonionic surfactants was synthesized and evaluated as corrosion inhibitors for steel pipelines in oil well formation water. Polarization data show that the selected surfactants act as mixed-type inhibitors. EIS results show that the change in impedance parameters (Rt and Cdl) with the concentration of the surfactants studied is indicative of the adsorption of surfactant molecules on carbon steel surface, leading to formation of a good protective film. The properties of this film were studied by various surface analysis tools. Finally, the relation between the surface properties of the inhibitor molecules and corrosion inhibition efficiency is discussed.  相似文献   

5.
Different electrochemical methodologies were established to induce general corrosion and blistering on homogeneous and heterogeneous carbon steel surfaces similar to the corrosion damage in a catalytic oil refinery plant. In one case, the film porosity and the iron sulphide stoichiometry were modified and in other case, the surface conditions were changed with sulphur films and microblisters. Additionally, we studied the influence of 1018 carbon steel surface conditions on the corrosion process in a medium simulating the average composition of sour waters in catalytic plants of PEMEX Mexico (0.1 M (NH4)2S, 10 ppm CN as NaCN, pH 8.8). Using the impedance spectra, from 10 kHz to 0.01 Hz, it was possible to qualitatively identify the carbon steel surface condition in an alkaline sour environment and to suggest the same corrosion process steps for this system, despite different surface conditions: charge transfer resistance of steel oxidation in the metal/corrosion product film interface and Fe2+ ion and H° diffusion through the corrosion product film. Finally, scanning electron microscopy of a freshly polished surface showed the formation of a homogeneous film immediately after introducing the carbon steel into the sour media. The other surface changes depended on the induced corrosion process and corroborated the electrochemical impedance predictions.  相似文献   

6.
This work is devoted to the corrosion inhibition of a carbon steel by a zinc salt/phosphonic acid association. Steady-state current-voltage curves and electrochemical impedance measurements carried out in the presence of each compound and for the mixture show a synergistic effect between the two molecules. The concentrations of the compounds in the mixture were lower than the concentrations used for each compound separately. Phosphonic acid was observed to act as an anodic inhibitor whereas cathodic action was shown for the zinc chloride. Electrochemical measurements and surface analysis (XPS and reflection-adsorption spectroscopy at grazing incidence) showed that the synergistic effect afforded by the mixture was attributable to the reaction of the phosphonic acid with the zinc salt. The inhibitor film acts as a protective layer impermeable to ionic or molecular diffusion. The film is very thin and homogeneous in composition. A chemical structure of the film is proposed.  相似文献   

7.
Green polymers as corrosion inhibitors are gradually used to protect metal in solution environment. A polyaspartic acid threonine derivative (PASP-Thr) was synthesized and its structure was characterized by Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic resonance. The corrosion inhibition effect of polyaspartic acid (PASP) and PASP-Thr on carbon steel in simulated cooling water was investigated by weight loss tests and electrochemical measurements. Experimental results show PASP-Thr as a mixed-type inhibitor exhibits higher corrosion inhibition efficiency than PASP, and the inhibition efficiency of PASP-Thr reached 93.06% at the dosage was 200 mg L−1. The carbon steel surface in different situations was analyzed using atomic force microscope, scanning electronic microscope/energy dispersive X-ray, and FTIR, demonstrates the formation of a protective film on carbon steel surface. The inhibition effect of PASP-Thr was primarily attributed to the protective film formed on steel surface by physical and chemical adsorption. Moreover, quantum chemical calculation elaborated the relationship between the inhibition efficiency and the PASP-Thr molecular structure. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47242.  相似文献   

8.
The corrosion inhibition effect and mechanism of rhamnolipid (RL) were studied for X65 steel in oilfield-produced water saturated with CO2 using the weight loss method, electrochemical measurements, surface analysis, surface-enhanced Raman spectroscopy (SERS), and quantum chemical calculations. The results prove that RL is an excellent inhibitor against CO2 corrosion and predominantly inhibits the anodic corrosion reaction of X65 steel. The inhibition performance of RL is connected with surface activity and molecular structure. RL adsorbs on the metal surface by the reactivity centers to form a protective film, and the film has good inhibition ability for X65 steel for up to 168 h.  相似文献   

9.
陈世亮  刘峥  刘洁  何育梅 《化工学报》2012,63(10):3225-3235
利用邻氧乙酸苯甲醛缩4-氨基苯甲酸钾盐席夫碱(K2L1)缓蚀剂在20#碳钢表面制备了自组装单分子膜(SAMs),通过电化学方法研究了缓蚀剂的合成条件、自组装时间等因素对成膜的影响,结果表明,合成中KOH与邻氧乙酸苯甲醛按2:1摩尔比进行反应得到的K2L1缓蚀剂在碳钢表面自组装3 h后,可以形成稳定、致密的缓蚀膜。缓蚀性能的研究表明,碳钢表面K2L1-SAMS抑制了碳钢的阴极还原过程,改变了电极表面双电层结构,具有良好的缓蚀效果(最高缓蚀效率可达95%以上),交流阻抗和极化曲线得到的结论是一致的。同时研究表明K2L1的吸附行为符合Langmuir吸附等温式,吸附机理是典型的化学吸附。量子化学计算结果表明,K2L1分子具有多个吸附活性中心,这些活性原子的前线轨道能与碳钢表面铁原子的前线轨道相互作用,因而使得K2L1分子在碳钢表面形成吸附膜,阻止了碳钢在饱和CO2油田水介质中的溶解。X射线光电子能谱(XPS)分析表明,K2L1通过配位键在碳钢表面形成了稳定的缓蚀膜。  相似文献   

10.
The inhibitive effect of hydroxyethyl cellulose (HEC) on mild steel corrosion in aerated 0.5 M H2SO4 solution was studied using gravimetric and electrochemical techniques. The effect of temperature on corrosion and inhibition was also investigated. The results show that hydroxyethyl cellulose functioned as a good inhibitor in the studied environment and inhibition efficiency increased with concentration of inhibitor. Potentiodynamic polarization measurements revealed that HEC inhibited both the cathodic and anodic partial reactions of the corrosion processes. Impedance results clearly show that HEC inhibited the corrosion reaction by adsorption onto the metal/solution interface by significantly decreasing the double layer capacitance (C dl ). This result was greatly pronounced in the presence of the inhibitor system (HEC + KI) that contains halide additive. Temperature studies revealed an increase in inhibition efficiency with rise in temperature. The adsorption behavior was found to obey the Freundlich isotherm. The values of activation energy, heat of adsorption, and standard free energy suggest that there was transition from physical to chemical adsorption mechanism of HEC on the mild steel surface. Quantum chemical calculations using the density functional theory (DFT) was employed to determine the relationship between molecular structure and inhibition efficiency.  相似文献   

11.
The corrosion and behavior of carbon steel in 2 M HCl in the presence of N-(2-hydroxybenzilidene) thiosemicarbazide (HBTC) was investigated using weight loss and electrochemical studies. The morphology of carbon steel surface was investigated using scanning electron microscopy (SEM) and Mössbauer spectrometry. The corrosion current was determined using Tafel polarization. The inhibition efficiency increased with HBTC concentration; the experimental results suggest that the presence of HBTC in the solution increases the surface coverage (θ); a decrease in the corrosion spot with the increase of the HBTC concentration indicates good adsorbability of HBTC on the metal surface. The adsorption of this compound on the metal surface is found to obey Langmuir's adsorption isotherm. Mössbauer spectroscopy showed at this stage the main product of corrosion is a non-stoichiometric amorphous Fe3+ oxyhydroxide, consisting of a mixture of α, β, and γ-FeOOH, where γ-FeOOH is the main phase.  相似文献   

12.
This study investigates the effect of a Schiff base namely 2-[2-(2-(3-phenylallylidene)hydrazine carbonothioyl)hydrazinecarbonyl]benzoic acid (SB), on corrosion inhibition of mild steel in 1 M HCl. Electrochemical impedance measurement, potentiodynamic polarization and weight loss methods were applied to study adsorption of SB at metal/solution interface. Results revealed that SB is an excellent inhibitor for mild steel corrosion in 1 M HCl; showing a maximum efficiency 99.5% at concentration of 1.36 × 10−6 M. Fourier transform infrared spectroscopy (FTIR) observations of the mild steel surface confirmed the formation of protective film on the metal surface by studied compound. Polarization studies showed that SB is a mixed-type inhibitor. Adsorption process obeyed Langmuir’s model with a standard free energy of adsorption (∆G°ads) of −46.7 kJ mol−1. Energy gaps for interactions between mild steel surface and inhibitor were found to be close to each other showing that SB possess capacity to behave as both electron donor and acceptor.  相似文献   

13.
With the growth of the green movement, it is important to prepare environmentally friendly anticorrosive paints to save lot of money, which are lost each year because of corrosion. High molecular weight organic corrosion inhibitor (safe adduct), barrier anticorrosive pigment (safe) and convertible anticorrosive pigment (toxic) are protective elements in paint formulations. Emulsification of the prepared adduct was the way to be applicable in water-borne paints, using mixture of emulsifiers. Surface tension measurements using ring method technique and thermal stability test could characterize the prepared emulsion systems. It was interesting to study the performance of the protective elements in water paint formulations based on short oil water thinned alkyd. Physical and mechanical properties of dry paint films, corrosion tests of the coated steel, water up-take% of the prepared paints, weight loss of steel under paint films after immersion in artificial sea water and corrosion inhibition efficiency of the protective elements were determined. Comparative studies of the protective elements in water-borne paints have been done according to performance, economic feasibility and environmental safety. It was found that zinc chromate as carcinogenic anticorrosive pigment could be replaced by 0.09% of the prepared water-borne corrosion inhibitor (MTDT adduct), 20% micaceous iron oxide (MIO) or their blend. Superior corrosion inhibition efficiency of steel was obtained in case of using MTDT/MIO blend. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
Functional copolymers are often used as protective coating against corrosion. In this research article, we have applied poly(NVI-co-EMA) coating over the mild steel surface which provides barrier protection against corrosion in aggressive environment. Hydrophobic nature of the copolymer film may augment the corrosion resistance behavior and thermal stability of the copolymer also influences the corrosion protection. Thus, the coating precluded the corrosive elements and corrosion products from diffusing through the coating. EIS technique revealed that the mild steel coated with hydrophobic copolymer film, which is immersed in 3% NaCl solution provides excellent protection from corrosion. Further, it is evidenced by protection efficiency of the copolymer which is greater than 90%. The results from surface analysis techniques like SEM, AFM and FTIR also supports and confirms a very thin film on the metal surface with excellent anticorrosion effects.  相似文献   

15.
The inhibition action of 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4) ionic liquids towards carbon steel corrosion in alkaline chloride solution was investigated by electrochemical measurements. The morphology of the surface was examined by atomic force microscopy (AFM), and the surface composition was evaluated via X-ray photoelectron spectroscopy (XPS) as well in order to verify the presence of inhibitor on the carbon steel surface. The results showed that the compound effectively suppressed both cathodic and anodic processes of carbon steel corrosion in alkaline solution by multi-center adsorption on carbon steel surface according to Langmuir adsorption isotherm, and acted as a mixed type inhibitor. The inhibition mechanism was proposed based on the viewpoint of complex physic-chemical interactions between the cationic inhibitor molecule and the carbon steel surface.  相似文献   

16.
The performance of 1-[(2-hydroxyethyl) amino]-2-(salicylideneamino)ethane (HAS) as a corrosion inhibitor for carbon steel in CO2-saturated 3.0% NaCl solution under aerated and deaerated conditions was studied using weight loss and potentiodynamic polarization methods at different temperatures. The results obtained show that in aerated environment, HAS acts as an effective corrosion inhibitor for carbon steel in CO2-saturated brine solution and accelerate corrosion under deaerated condition. Inhibition efficiency (IE%) increased with increase in HAS concentration but decreased with increase in temperature. Corrosion inhibition action was via the adsorption of HAS on the metal’s surface which follows the Langmuir adsorption isotherm model. Polarization curves indicate that HAS functions as a mixed-type inhibitor.  相似文献   

17.
Electrochemical processes occurring on the cut-edge of a galvanized steel immersed in NaCl solutions were studied using numerical simulations, and in situ current and pH profiles measured over the cut-edge. These results clearly demonstrate that only the steel surface remote from the zinc coating is cathodically active, oxygen reduction being strongly inhibited in the vicinity of zinc. This trend was confirmed by local polarization curves recorded on these distinct areas. Ex-situ AES and SEM analysis and cathodic polarization curves in solutions containing Zn2+ ions led to conclude that this cathodic inhibition was related to the fast nucleation of a dense Zn(OH)2 film on the steel surface. After a long term exposure, a new galvanic coupling takes place between the Zn(OH)2 covered area, showing an anodic activity, and the remaining steel surface covered by bulky white zinc corrosion products.  相似文献   

18.
The corrosion inhibition potentials of Mentha rotundifolia oil on carbon steel in 1 M HCl was studied at different concentrations via gravimetric, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques. Polarization curves reveal that Mentha rotundifolia oil is a mixed-type inhibitor. Changes in impedance parameters (charge transfer resistance Rt, and double-layer capacitance Cdl) were indicative of adsorption of Mentha rotundifolia on the metal surface, leading to the formation of a protective film. The effect of the temperature on the corrosion behavior with addition of the optimal concentration of Mentha rotundifolia oil was studied in the temperature range 308 and 338 K. Adsorption of oil on the carbon steel surface is found to obey the Langmuir adsorption isotherm. Attempts to explain the inhibitory action were carried out using density functional theory (DFT) at B3LYP/6-31G(d,p) level. Quantum chemical parameters most relevant to its potential action as corrosion inhibitor such as EHOMO (highest occupied molecular orbital energy), ELUMO (lowest unoccupied molecular orbital energy), energy gap (ΔE), and Mulliken charges have been calculated and discussed. The theoretical results were found to be consistent with the experimental data.  相似文献   

19.
The objective of this study is to evaluate the effect of low-level hydrogen sulfide (H2S) on carbon dioxide (CO2) corrosion of carbon steel in acidic solutions, and to investigate the mechanism of iron sulfide scale formation in CO2/H2S environments. Corrosion tests were conducted using 1018 carbon steel in 1 wt.% NaCl solution (25 °C) at pH of 3 and 4, and under atmospheric pressure. The test solution was saturated with flowing gases that change with increasing time from CO2 (stage 1) to CO2/100 ppm H2S (stage 2) and back to CO2 (stage 3). Corrosion rate and behavior were investigated using linear polarization resistance (LPR) technique. Electrochemical impedance spectroscopy (EIS) and potentiodynamic tests were performed at the end of each stage. The morphology and compositions of surface corrosion products were analyzed using scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The results showed that the addition of 100 ppm H2S to CO2 induced rapid reduction in the corrosion rate at both pHs 3 and 4. This H2S inhibition effect is attributed to the formation of thin FeS film (tarnish) on the steel surface that suppressed the anodic dissolution reaction. The study results suggested that the precipitation of iron sulfide as well as iron carbonate film is possible in the acidic solutions due to the local supersaturation in regions immediately above the steel surface, and these films provide corrosion protection in the acidic solutions.  相似文献   

20.
The corrosion inhibition of mild steel in hydrochloric acid solution by chamomile (Matricaria recutita) extract (CE) was investigated through electrochemical (polarization, EIS) and surface analysis (optical microscopy/AFM/SEM) techniques. The effects of inhibitor concentration, temperature, and pH were evaluated. Thermodynamic parameters were calculated and adsorption studies were carried out. Finally, the surface morphology was investigated. The electrochemical studies showed that CE acts as a mixed-type corrosion inhibitor with predominantly anodic behavior. CE was adsorbed physically on the metal surface and obeyed the Langmuir adsorption isotherm. It impeded the corrosion processes by changing the activation energy. In the presence of CE, the metal surface was more uniform than the surface in the absence of inhibitor. Maximum inhibition efficiency (IE) was 93.28%, which was obtained at 22°C in 7.2 g/L of inhibitor in 1 M HCl solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号