首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在传统Fin FET集成工艺上,通过Ge Si/Si叠层量子阱结构外延生长再形成堆叠纳米线MOS场效应晶体管的方案,是实现5 nm及其以下CMOS集成电路工艺技术最具可能的器件方案。由于Ge元素在该技术中的引入,导致器件工艺中的浅沟槽隔离(STI)工艺部分产生严重的低温高深宽比工艺(HARP) SiO_2腐蚀速率控制问题。本文针对堆叠纳米线MOS器件STI工艺中的低温HARP SiO_2回刻腐蚀速率调节与均匀性控制问题,进行了全面的实验研究。实验中使用HF溶液对不同工艺条件下的HARP SiO_2进行回刻腐蚀,并对其腐蚀速率变化进行了详细研究,具体包括不同退火时长以及相同退火温度不同厚度HARP SiO_2位置处的腐蚀速率。通过实验结果发现,在退火温度相同的情况下,随着退火时长的增加,SiO_2腐蚀速率逐渐变小;而对于同一氧化层来说,即使退火条件相同,SiO_2不同厚度位置处的腐蚀速率表现也不同,即顶部的速率最大,而底部则最小。由此可以看出,随着退火时长的增加,低温HARP SiO_2腐蚀速率逐渐减小,并且对STI具有深度依赖性。该实验结果对成功制作5 nm技术代以下堆叠纳米线器件的STI结构起到了重要的技术支撑作用。  相似文献   

2.
针对5 nm CMOS技术代亟待解决的纳米线释放难题,通过实验探究了HF(6%)∶H_2O_2(30%)∶CH_3COOH(99.8%)=1∶2∶3的混合溶液放置时间对纳米尺度外延堆叠GeSi/Si/GeSi/Si结构释放影响。混合溶液放置时间在48 h内,GeSi层的腐蚀速率会随着溶液的放置时间的增加而变大,48 h后腐蚀速率趋于稳定。另外,在厚度相同的情况下,Ge Si层的腐蚀速率会随着Ge含量的增加而变大。本文实现了腐蚀纳米尺度GeSi的同时没有对Si造成损伤,对于厚度为31.3 nm的GeSi层,腐蚀的深宽比达到了17∶1,而且没有出现倒塌现象。该湿法腐蚀工艺对于5 nm及以下技术代堆叠纳米线制造、SON结构、新型MEMS和传感器件制造等具有一定的借鉴和指导意义。  相似文献   

3.
丁本远  吴锂  姚楚君  李乐群  刘煜  吴嘉达  许宁  孙剑 《功能材料》2023,(12):12023-12028+12067
Si纳米材料自问世以来便受到研究者的重视,其不同于宏观块体材料的特殊性质可使其应用于各个领域。如何制备形貌较好且具有良好光电性能的纳米材料是在纳米材料应用前必须解决的问题。以Ni膜作为催化剂直接在Si衬底上制备了密集的Si纳米线,获得了Si纳米线较强的蓝紫波段的发光,研究了退火温度、退火气氛N2流速、Si膜厚度等制备条件对Si纳米线形貌、光致发光强度的影响,并讨论了双层膜制备Si纳米线形成和生长机理。实验结果显示,退火温度、N2流速对Si纳米线的生长起到关键性的作用,N2流速能够影响Si纳米线的光致发光强度,且较大的N2流速能够使Si纳米线定向生长。而在Ni膜催化剂上预沉积一层适当厚度的Si膜也有助于Si纳米线的生长,且有效改善了Si纳米线的光致发光强度。  相似文献   

4.
模拟自对准硅化物技术的两步退火工艺,对超高真空(UHV)下制备的Ti/Si样品依次进行低温退火、腐蚀和高温退火。利用俄歇微探针(AES)和X射线衍射(XRD)分析样品的组分及晶相。发现高温退火后,薄膜内同时生成了Ti的硅化物及氮化物,这对发展MOS器件工艺中自对准硅、氮化物技术很有意义。另外,还利用扫描电镜(SEM)观察了薄膜形貌,用VandePauw法测量了薄膜电阻。  相似文献   

5.
赵欣  曹文会  李劲劲 《计量学报》2022,43(3):412-415
化学机械平坦化(chemical mechanical planarization,CMP)工艺处理Si02绝缘层是一种获得高度集成化超导电路的关键技术,尤其适合于多层堆叠约瑟夫森结阵列器件的平整化.设计了应用于热氧化生长的Si02薄膜和化学气象沉积生长的Si02薄膜的CMP工艺,得出两种薄膜的抛光速率分别为2 nm/...  相似文献   

6.
程雪梅 《高技术通讯》2000,10(10):32-35
研究了Si基富Ge含量的Si1-x-yGexCy异质结构的热退火地为,采用等离子体增强化学气相淀积(PECVD)法在Si(100)衬底上淀积一层厚度为170nm的Si1-x-yGexCy薄膜(x-0.7,y-0.15),并在其上覆盖-Ge层,将样品分别在650度和800度下进行N2氛围下热退火20min。用拉曼谱(Raman),俄歇电子能谱(AES)以及X射线光电子能谱XPS等方法对样品进行研究。研究结果表明,低温PECVD法生长的Si1-x-yGexCy薄膜是一种亚稳结构,Ge/Si1-x-yGexCy/Si异质结构在650度下呈现不稳定性,薄膜中的Ge,C相对含量下降,且在界面处出现Ge,C原子的堆积,经过800度下退火20min的样品中C 含量基本为0,Ge相对含量下降至约20%左右,且薄膜的组分比较均匀。  相似文献   

7.
采用磁控溅射技术和退火工艺在钠钙玻璃衬底上制备了Mg_2Si半导体薄膜,研究了Mg膜厚度对Mg_2Si薄膜结构及其电学性质的影响。在钠钙玻璃上分别溅射两组相同厚度(175nm)的P-Si和N-Si膜,然后在其上溅射不同厚度Mg膜(240nm、256nm、272nm、288nm、304nm),低真空退火4h制备一系列Mg_2Si半导体薄膜。通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)、霍尔效应测试仪对Mg_2Si薄膜的晶体结构、表面形貌、电学性质进行表征与分析。结果表明:采用磁控溅射技术在钠钙玻璃衬底上成功制备出以Mg_2Si(220)为主的Mg_2Si薄膜。随着沉积Mg膜厚度的增加,Mg_2Si衍射峰逐渐增强,薄膜表面更连续,电阻率逐渐减小,霍尔迁移率逐渐降低,载流子浓度逐渐增加。此外,Si膜导电类型和Mg膜厚度共同影响Mg_2Si薄膜的导电类型。溅射N-Si膜时,Mg_2Si薄膜的导电类型随着Mg膜厚度的增加由P型转化为N型;溅射P-Si膜时,Mg_2Si薄膜的导电类型为P型。可以控制制备的Mg_2Si半导体薄膜的导电类型,这对Mg_2Si薄膜的器件开发有着重要的指导意义。  相似文献   

8.
通过控制局部双轴压应变SiGe材料的缺陷、组分与厚度,设置了多晶Si侧壁与Si缓冲层的特别几何结构.采用固态源分子束外延MBE设备生长了适于PMOSFET器件的局部双轴压应变Si0.8Ge0.2材料.经SEM、AFM、XRD测试分析,该材料表面粗糙度达0.45nm;Si1-xGex薄膜中Ge组分x=0.188,厚度为37.8nm,与设计值较接近;穿透位错主要由侧壁界面产生,集中在窗口边缘,密度为(0.3~1.2)×10.cm-2;在表面未发现十字交叉网格,且Si0.8Ge0.2衍射峰两侧干涉条纹清晰,说明Si0.8Ge0.2与Si缓冲层界面失配位错已被有效抑制.测试分析结果表明,生长的局部双轴压应变SiGe材料质量较高,可用于高性能SiGe PMOSFET的制备与工艺参考.  相似文献   

9.
SiO2/Si(111)表面Ge量子点的生长研究   总被引:1,自引:0,他引:1  
Si衬底用化学方法清洗后,表面大约残余1.0 nm厚SiO2薄膜.利用原子力显微镜(AFM)和反射高能电子衍射(RHEED)来研究温度和Ge蒸发厚度对在SiO2薄膜表面生长的Ge量子点的影响.实验结果表明,当衬底温度超过500 ℃时,SiO2开始与Ge原子发生化学反应,并形成与Si(111)表面直接外延的Ge量子点.在650 ℃时,只有Ge的厚度达到0.5nm时,Ge量子点才开始形成.  相似文献   

10.
Si衬底用化学方法清洗后,表面大约残余1.0 nm厚SiO2薄膜.利用原子力显微镜(AFM)和反射高能电子衍射(RHEED)来研究温度和Ge蒸发厚度对在SiO2薄膜表面生长的Ge量子点的影响.实验结果表明,当衬底温度超过500 ℃时,SiO2开始与Ge原子发生化学反应,并形成与Si(111)表面直接外延的Ge量子点.在650 ℃时,只有Ge的厚度达到0.5nm时,Ge量子点才开始形成.  相似文献   

11.
报道了在正己硫醇作表面活性剂下,还原HAuCl_4为Au纳米粒子沉积到Si纳米线表面,并利用吸收光谱研究了Au粒子修饰Si纳米线前后的光学性质。通过SiO粉末氧化物辅助生长技术合成了Si纳米线,测量了Si纳米线的吸收光谱,结果表明,与覆盖有SiO_2层的Si纳米线相比,HF处理后的Si纳米线的吸收峰略微“蓝移“。Au纳米粒子沉积到Si纳米线上以后,出现了两个新的吸收峰,波长分别为460和550nm。550nm的吸收峰表明Au纳米粒子的存在,460nm的吸收峰可能是由于Au粒子与Si线之间的界面作用导致的。  相似文献   

12.
离子束溅射生长Ge纳米薄膜的表面形貌观察   总被引:1,自引:0,他引:1  
采用离子束溅射技术并按正交试验方案生长了不同厚度以及在不同条件下退火的Ge纳米薄膜,用AFM图谱对薄膜的表面形貌进行了表征.结果表明厚度为2.8nm的Ge膜在600℃下退火10min,出现了高4nm、直径50nm左右的Ge岛,而10nm厚的Ge膜在720℃下退火120min,岛的数量较多且分布比较均匀.通过离子束溅射机理和沉积原子之间的扩散运动,对这些现象进行了较为合理的解释.  相似文献   

13.
通过选择性离子注入,在硅片表面形成P区、N区紧密接触的PN结结构.实验发现,在黑暗条件下,PN结N型区域可被HF酸或BOE溶液选择性腐蚀;该腐蚀速率与HF酸溶液浓度有关,随环境温度升高而加快,腐蚀速率范围为0.25~3.5nm/min;腐蚀后硅片表面平整.对腐蚀机理进行了初步讨论.结合氧化硅蚀刻缓冲液(BOE溶液)氧化硅牺牲层腐蚀技术,发展出一套硅纳米线加工工艺;利用该工艺,加工出特征尺寸小于100nm的硅纳米线.  相似文献   

14.
室温下用磁控溅射法在Si(111)衬底上生成Au/SiO2复合纳米颗粒膜,并分不同温度进行退火处理。1000℃退火时自组装生成空间分布均匀(直径约为70nm)的Au纳米点,从而用自组装生长方法制备了生长一维纳米材料的模板,然后,将Au催化剂模板在1100℃下退火处理,生成纳米线,SEM和TEM测试,制备的SiO2纳米线直径约为100nm,长度约为4μm,表面光滑,直且粗细均匀。  相似文献   

15.
以Ge-SiO2和Si-SiO2复合靶作为溅射靶,分别采用射频磁控溅射技术和双离子束溅射技术制得了Ge-SiO2和Si-SiO2薄膜.然后分别在N2气氛中经过600 ℃-1000 ℃的不同温度的退火.通过X射线衍射(XRD),透射电子显微镜(TEM),光电子能谱(XPS)分析等测试手段,将两种薄膜进行了比较.在Ge-SiO2样品中,随退火温度的升高,会发生GeOx的热分解或者与Si发生化学反应,引起部分氧原子逸出和Ge原子的扩散和聚集,从而形成纳米Ge的晶粒.在Si-SiO2薄膜样品中,由于Si的成核长大速率较低,因而颗粒长大的速率较慢,薄膜内不易形成Si颗粒.只有经1 000 ℃高温退火后样品中才有少量单质Si颗粒形成.  相似文献   

16.
采用脉冲激光沉积方法在Si(111)基片上制备了Mg2Si薄膜。研究了激光能量密度、退火气氛及压强、退火温度、退火时间等工艺条件对Mg2Si薄膜生长的影响。用X射线衍射仪分析了Mg2Si薄膜的物相,用原子力显微镜、高分辨场发射扫描电镜表征了薄膜的形貌。实验结果表明:在激光能量密度为2.36 J/cm2,Si(111)基片上室温、真空(真空度10-6Pa)条件下沉积,在Ar气压强为10 Pa,500℃,30 min条件下原位退火得到了纯相、结构均匀、表面平整、厚度约为900 nm的Mg2Si多晶薄膜。  相似文献   

17.
为降低钢在铝液中的腐蚀,通过对比纯铝、Al-Si、Al-Sn、Al-Mg铝合金熔体静态腐蚀作用下Q235钢/熔体界面的结构、形貌和腐蚀速率,研究了Si、Sn、Mg元素对Q235在铝合金熔体中静态腐蚀的影响。结果表明:Q235在不同铝合金熔体中均发生腐蚀,表面均形成Fe_2Al_5金属间化合物层,在铝液中添加Si可以使形成的Fe_2Al_5层由舌状转变为平板状,减小Fe_2Al_5层厚度,并显著减缓腐蚀速率;添加Sn和Mg不改变Fe_2Al_5层的形态和厚度,减缓腐蚀速率效果不如Si显著;Si、Sn、Mg不改变Fe_2Al_5择优生长的特点;Si降低腐蚀速率的机制是阻塞Fe_2Al_5空位孔道抑制原子扩散;Sn、Mg降低腐蚀速率的机制是占位阻隔减缓扩散速率。  相似文献   

18.
硅纳米线(Si NWs)由于具有独特的一维结构、热电导率、光电性质、电化学性能等特点,被广泛应用于热电与传感器件、光电子元器件、太阳能电池、锂离子电池等领域。金属辅助化学刻蚀法(MACE)是制备Si NWs的常用方法之一,具有操作简便、设备简单、成本低廉和高效等优点,可大规模商业化应用,因而近年来被广泛研究。金属辅助化学刻蚀制备硅纳米线的过程可以分为两步:首先在洁净的硅衬底表面沉积一层金属(Ag、Au、Pt等)纳米颗粒,以催化、氧化它附近的硅原子;然后利用HF溶解氧化层,从而对硅晶片进行刻蚀,形成纳米线阵列。然而,这种简单高效的制备硅纳米线的方法存在一些难以控制的缺点:(1)金属纳米颗粒聚集、相连后造成Si NWs之间的缝隙比较大,从而导致Si NWs密度较低;(2)由于金属纳米颗粒沉积的随机性,在硅晶片表面分布不均匀,不仅导致刻蚀出的纳米线直径范围(50~200 nm)较宽,而且使制得的纳米线阵列排列无序且间距不易调控;(3)当刻蚀出的硅纳米线太长时,范德华力等作用会造成纳米线顶端出现严重的团簇现象。针对常规法存在的一些问题以及不同的器件对硅纳米线的形貌、类型和直径等的要求,近年来的研究主要集中在如何减少纳米线顶端团簇、调控纳米表面粗糙度和直径、低成本制备有序硅纳米线等方面。目前一些改进常规金属辅助化学刻蚀的方法取得了进展,比如:(1)用酸溶液或UV/Ozone对硅晶片预处理,在表面形成氧化层,可以使纳米线的均匀性得到改善并增大其密度(从18%提高到38%);(2)使用物理气相沉积法在硅晶片表面沉积一层金属纳米薄膜,然后再刻蚀,这种方法能够减少纳米线顶端团簇和有效调控纳米线直径;(3)利用模板法(聚苯乙烯小球模板、氧化铝模板、二氧化硅模板和光刻胶模板等)可以制备出有序的硅纳米线阵列。本课题组用离子束刻蚀的方法制备了直径范围可以控制在30~90 nm的聚苯乙烯小球模板,为小尺寸有序硅纳米线的制备打下了坚实的基础。本文简要介绍了常规MACE的原理和制备流程,总结了硅晶片的类型、刻蚀溶液的浓度、温度和刻蚀时间等因素对Si NWs形貌、尺度、表面粗糙度、刻蚀方向以及刻蚀速率的影响,用相关的机制解释了H2O2过量时刻蚀路径偏离垂直方向的机理以及刻蚀速率随溶液浓度变化的原因,重点综述了氧化层预处理、物理法沉积贵金属纳米薄膜、退火处理和模板法等改进方法在减少纳米线顶部团簇、改善均匀性、制备有序且直径和间距可控纳米线中的研究进展。  相似文献   

19.
王永远  谢泉 《纳米科技》2013,(1):14-16,39
采用射频磁控溅射和低真空退火方法制备Mg2Si/Si异质结,首先在n型Si(111)衬底上沉积Mg膜,经低真空退火形成Mg2Si/Si异质结,Mg膜厚度约为484nm,退火后形成的Mg2Si薄膜厚度约400nto,利用xRD和sEM分别研究了Mg2Si薄膜的晶体结构和表面形貌,霍尔效应结果表明,制备的Mg2Si薄膜呈现n型导电特性。  相似文献   

20.
季振国 《无机材料学报》2008,23(4):1800-1800
金属-氧化物-半导体结构(MOS)是目前电子器件中最重要的器件之一,现代电子技术可以说是建立在MOS器件之上的。随着集成电路技术的不断发展,MOS技术到达了一个关键的转折点. 由于器件尺寸不断缩小, 导致MOS中氧化层厚度相应减小, 电子的隧道穿透效应逐渐显现出来, 引起的棚极-沟道漏电流急剧增大,导致器件发热量增加、性能下降甚至失效,因此限制了MOS器件尺寸的进一步缩小. 当MOS进入65nm工艺时,二氧化硅的厚度已经降至1.2nm(大约相当于5个原子层的厚度),这样的厚度几乎已经达到了二氧化硅介质层物理极限. 因此,45nm技术及以下工艺不能继续沿用原有的MOS结构与制备技术,必须采用新的结构、新的材料、新的工艺以便进一步缩小MOS器件的尺寸,提高器件的工作速度,降低器件的能耗. 高电介质常数介质膜被业界认为是开发45nm以下硅集成电路芯片技术的关键. 业界普遍认为利用high K绝缘层技术的MOS器件是20世纪60年代MOS晶体管出现以来,晶体管技术发生的最大变化. 2005年以及以后的International technology roadmap for Semiconductors 均把high K技术作为标志性内容之一. 目前国际上有关high K材料与器件的研究比较多,Intel、IBM等已经实现研究成果向生产技术的转移,其中Intel公司在45nm微处理器技术中利用high K绝缘栅技术已经取得突破性进展,并于2007年11月16日发布了一系列利用high K技术的45nm处理器,IBM公司也已经在MOS工艺中实现high K绝缘栅技术. 较以前的MOS工艺,基于high K技术的芯片中晶体管数量成倍增加,栅极漏电流减小了数倍,功耗大幅减小. 根据目前透露的资料,high K绝缘层为Hf基氧化物,但是介质膜的具体成分、结构、制备工艺流程以及与Hf基氧化物配合的金属栅极材料等技术内容目前均属于保密资料. 从国内同行的研究看,目前发表的相关研究文章主要集中在对high K绝缘栅的介绍或综述性评论,实际开展的研究工作很有限. 因此,及时开展对high K绝缘层成分与制备工艺方面的研究,对于我国集成电路制造业跟上国际集成电路技术的发展方向和先进水平、打破国外的技术垄断是非常必要的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号