首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
瓦斯浓度对瓦斯爆炸影响的数值模拟研究   总被引:2,自引:0,他引:2  
采用流体动力学软件Fluent,对方形管道内体积分数分别为7.5%,9.5%,11.5%的瓦斯气体爆炸过程进行数值模拟研究,分析其爆炸过程中的压力、温度和火焰传播速度。结果表明:在3种不同浓度的瓦斯气体爆炸过程中,火焰的传播趋势大致相同,但火焰传播速度、管道内的超压以及温度有较大的区别;体积分数为9.5%的瓦斯气体爆炸过程中火焰传播速度、超压和温度均最大。模拟结果与前人的实验结果吻合。  相似文献   

2.
气液两相介质抑制管道甲烷爆炸协同增效作用   总被引:1,自引:0,他引:1       下载免费PDF全文
瓦斯抽采管道一旦泄漏或受到外部火源波及,极有可能引发爆炸事故。基于自行搭建的惰性气体-超细水雾惰化抑制可燃气体爆炸试验系统,研究了气液两相介质抑制9.5%甲烷/空气预混气爆炸的影响因素和协同作用规律,并分析了其抑爆协同增效的原因,提出气液两相介质抑爆存在相间耦合作用。实验结果表明:在CO2,N2,He和Ar四种惰性气体与超细水雾的共同作用下,气液两相介质对9.5%甲烷/空气预混气爆炸超压、火焰传播速度和最大火焰温度的抑制均表现出明显的协同增效作用。当4种惰性气体稀释体积分数达到14%、细水雾通入量8-4 mL(质量浓度694.4 g/m3)后,均能对9.5%甲烷/空气爆炸产生良好的抑制效果;控制参数继续增加,抑爆增效作用的增长幅度缩小;其中CO2与超细水雾下的协同抑爆效果最好,N2次之,He,Ar与超细水雾的协同抑爆水平相差不大,为清洁、高效惰化细水雾抑爆技术的应用提供了技术指导。  相似文献   

3.
水系抑制剂控制瓦斯爆炸的实验研究   总被引:13,自引:0,他引:13       下载免费PDF全文
陈晓坤  林滢  罗振敏  邓军 《煤炭学报》2006,31(5):603-606
运用高速摄影仪在小型爆炸实验台上分别对CH4体积百分浓度约为9.5%的甲烷和空气的混合气在超细清水雾以及超细NaHCO3,NaCl,KCl水雾气氛中的爆炸过程进行了实验研究.实验发现:在超细水雾气氛下,瓦斯的爆炸感应期明显延长,火焰在实验管道中传播的平均速率和最大速率显著降低,并出现了火焰驻停现象.实验表明:含有NaHCO3,NaCl,KCl的超细水雾对瓦斯爆炸的控制效果要优于超细清水雾的控爆效果,其中又以KCl超细水雾为最佳.  相似文献   

4.
建立了超细水雾作用下甲烷-空气爆炸过程的三维数值模型,采用大涡模拟模型计算爆炸流场瞬态流动过程;考虑了水雾的蒸发、汽化过程以及气液两相间的质量、动量和热量交换,通过欧拉-拉格朗日模型分别对连续相与离散相进行计算,交替求解离散相与连续相的控制方程实现气液两相间的耦合求解;分析了水雾粒径对爆炸火焰反应区作用程度以及热量交换速率的影响;获得了最佳抑爆粒径并解释了粒径导致抑爆效果差异的原因;水雾粒径通过与火焰反应区的作用程度和蒸发速率影响气液两相间的热量交换速率,进而影响火焰传播速率和爆炸强度;为实现爆炸强度的有效抑制,水雾粒径选取的条件应保证水雾在反应区完全汽化。  相似文献   

5.
超细水雾-多孔材料协同抑制瓦斯爆炸实验研究   总被引:3,自引:0,他引:3       下载免费PDF全文
余明高  刘梦茹  温小萍  裴蓓 《煤炭学报》2019,44(5):1562-1569
为探究超细水雾与多孔介质在协同作用下对多孔介质淬熄效果以及多孔介质上游爆炸超压的影响,自行设计并搭建了尺寸为80 mm×80 mm×1 000 mm透明有机玻璃瓦斯爆炸管道实验平台,研究超细水雾质量分数、多孔材料孔径及孔隙率对9. 5%甲烷压的协同抑制效果。实验结果表明,改变超细水雾质量分数、多孔材料孔径以及孔隙率,在多孔材料上游,最大火焰传播速度和最大爆炸超压有着显著变化,随着超细水雾质量分数增加,火焰锋面传播速度峰值和爆炸超压逐渐减小,爆炸超压峰值出现时间随之缩短,而随着孔径的减小,火焰锋面传播速度也逐渐减小,压力衰减率明显增加。同时,超细水雾和多孔材料的组合方式对瓦斯爆炸具有耦合抑制作用,管道内通入超细水雾可吸收反应区大量热能,降低反应速率与火焰传播速度,此外多孔材料的存在吸收了部分前驱冲击波,破坏正反馈机制,因此两者协同抑制优于单一抑制效果。放置在管道中的多孔材料使得传播火焰淬熄,且添加的超细水雾降低了多孔材料上游的超压,但是一旦多孔介质淬熄失败,火焰湍流加剧,可能会导致更为严重的事故发生。此外,与9. 5%甲空气预混气相比,孔隙率为87%,孔隙密度为20 PPI和超细水雾质量浓度为1 453. 1 g s,下降比例达到44. 23%,且多孔材料上游的最大爆炸超压为6. 13 kPa,降低了40. 62%,抑制效果最明显。  相似文献   

6.
荷电细水雾抑制瓦斯爆炸实验研究   总被引:3,自引:0,他引:3       下载免费PDF全文
余明高  梁栋林  徐永亮  郑凯  纪文涛 《煤炭学报》2014,39(11):2232-2238
为了研究荷电细水雾对瓦斯爆炸的抑制效果以及抑爆机理,根据静电感应原理,自行设计了小尺寸的荷电细水雾发生装置,并开展了荷电细水雾抑制瓦斯爆炸的实验研究。实验分析了在不同荷电极性、荷电电压以及雾通量下,荷电细水雾对瓦斯爆炸压力和火焰传播速度的影响。结果表明:荷电细水雾较普通细水雾能更有效地降低瓦斯爆炸压力峰值以及火焰传播速度,且随着荷电电压的增大,荷电细水雾的抑爆效果显著增强。同时荷负电荷的细水雾较荷正电荷的细水雾抑爆效果更好。当荷电电压为8 k V时,荷电细水雾使瓦斯爆炸压力峰值下降64.7%,升压速率下降33.03%,火焰传播速度下降34.9%。  相似文献   

7.
在实验的基础上,研究了外加电磁场对瓦斯爆炸过程中火焰传播速度和超压的影响。研究结果表明外加电磁场使瓦斯爆炸强度增加,使火焰速度、火焰速度峰值、压力波超压峰值增大,随着电磁场强度增加,其对瓦斯爆炸加剧作用增强。并从理论上分析了外加电磁场对瓦斯爆炸的影响。  相似文献   

8.
薛少谦 《煤矿安全》2013,44(7):66-69
通过阐述主动喷粉抑爆技术的技术原理,分析总结瓦斯煤尘爆炸传播规律,认为主动喷粉抑爆技术的应用效果主要与抑爆粉剂浓度、主动喷粉抑爆技术装备动作时间及瓦斯煤尘爆炸传播规律有关;并通过大型地下试验巷道,模拟实际应用主动喷粉抑爆技术及装备抑制实际发生的瓦斯煤尘爆炸传播试验,分析了主动喷粉抑爆技术对爆炸火焰及冲击波压力的抑爆效果,验证了主动喷粉抑爆技术能够在爆炸初期抑制瓦斯煤尘爆炸传播。  相似文献   

9.
为研究含弱约束受限空间内甲烷爆炸压力升高及沿扩散管的传播特征,对不同体积分数甲烷的爆炸特征参数进行了系列实验。获得了含弱约束结构受限空间在不同浓度甲烷爆炸时的压力升高规律,研究表明,含弱约束受限空间内的甲烷爆炸压力升高趋势类似封闭空间,但压力峰值远小于封闭空间,封闭空间最大压力是含弱约束结构空间的3.2倍。由于若约束结构的存在,甲烷体积分数较低时破膜压力较大,腔体内高压持续时间较短,而接近爆炸当量浓度时腔体内高压持续时间增长。扩散管中的爆炸压力和火焰传播规律随甲烷体积分数变化呈现明显不同。在实验条件下,当甲烷体积分数低于7.0%时,破膜激波与火焰锋面时间差最大为5.255 ms,扩散管中的火焰主要为膨胀火焰。而甲烷体积分数高于7.4%时,破膜激波与火焰锋面时间差为28~40 ms,说明在管外发生了二次爆炸,以湍流火焰为主。爆炸压力的沿管道传播则分为3种情况,甲烷体积分数低于7.0%时,爆炸压力随传播距离增大而减小;甲烷体积分数为7.4%和11.0%时,爆炸压力随传播距离增大呈线性增大;甲烷浓度为当量浓度时,其压力传播特征类似于全管道甲烷爆炸的特征,随传播距离呈现锯齿形增大。实验结论对天然气长输管道、LNG和CNG储罐检修过程中的爆炸事故预防和含弱约束结构的其他气体泄爆具有参考意义。  相似文献   

10.
为分析立体障碍物对甲烷爆炸特性的影响,在水平管道中设置了不同形状的立体障碍物,测试并分析管内甲烷爆炸过程中火焰传播速度、最大爆炸压力、最大爆炸压力上升速率的变化。结果表明:立体障碍物存在条件下火焰传播速度、最大爆炸压力和最大爆炸压力上升速率都显著升高,尤以火焰传播速度的增加较为明显。且随着障碍物阻塞率的增加,甲烷爆炸特性随之增强。在阻塞比相同的情况下,直角三棱柱的影响最为显著,斜三棱柱居次,长方体强于圆柱体,螺旋形障碍物影响规律不稳定。  相似文献   

11.
瓦斯爆炸火焰波与冲击波伴生关系的实验研究   总被引:4,自引:1,他引:3  
在煤矿瓦斯爆炸过程中,爆炸火焰和冲击波是决定事故危害程度的2个主要因素。作者设计了氢氧引爆甲烷-空气爆炸的实验方案,对高速瓦斯爆炸参数的变化特征进行了研究。通过实验测试瓦斯爆炸传播阶段的火焰和压力状态,研究瓦斯爆燃火焰波与冲击波的形成过程及其特性。研究表明,在瓦斯爆炸火焰传播过程中,湍流效应是加速火焰传播和伴生冲击波的重要因素;爆炸火焰的传播速度直接影响着爆炸冲击波的生成和加强程度。依据实验研究结果,提出了一些防治煤矿瓦斯爆炸的建议。  相似文献   

12.
瓦斯输送管道爆炸自动喷粉抑爆技术   总被引:3,自引:0,他引:3  
通过论述自动喷粉抑爆技术原理及构成,分析总结瓦斯管道爆炸传播规律,得出自动喷粉抑爆技术抑爆效果主要取决于装备相应时间、干粉浓度粒度及NH4H2PO4质量分数。在DN500爆炸试验管道进行瓦斯管道爆炸传播试验和抑爆试验研究自动喷粉抑爆装置抑爆效果,抑爆器动作后,爆炸火焰在抑爆器后3.5 m内被扑灭,爆炸冲击波在爆炸火焰被扑灭后,不断衰减,最终消失。试验表明:自动喷粉抑爆技术能够有效的抑制瓦斯爆炸。  相似文献   

13.
The effect of the electric field with different intensity on explosion wave pressure and flame propagation velocity of gas explosion was experimentally studied, and the effect of electric field on gas explosion and its propagation was theoretically analyzed from heat transportation, mass transportation, and reaction process of gas explosion. The results show that the electric field can affect gas explosion by enhancing explosion intensity and explosion pressure, thus increasing flame velocity. The electric field can offer energy to the gas explosion reaction; the effect of the electric field on gas explosion increases with the increase of electric field intensity. The electric field can increase mass transfer action, heat transfer action, convection effects, diffusion coefficient, and the reaction system entropy, which make the turbulence of gas explosion in electric field increase; therefore, the electric field can improve flame combustion velocity and flame propagation velocity, release more energy, increase shock wave energy, and then promote the gas explosion and its propagation.  相似文献   

14.
张辉  菅从光  李静  乐俊  高建康 《煤矿安全》2006,37(5):1-3,13
在实验的基础上,研究了外加电磁场对瓦斯爆炸过程中火焰传播速度和超压的影响。研究结果表明:外加电磁场使瓦斯爆炸强度增加,使火焰速度、火焰速度峰值、压力波超压峰值增大,随着电磁场强度增加,其对瓦斯爆炸加剧作用增强。并从理论上分析了外加电磁场对瓦斯爆炸的影响。  相似文献   

15.
通过建立长为4 m、断面尺寸为80 mm×80 mm的绝热巷道,运用AutoReaGas软件研究了9.5%浓度的甲烷/空气预混气体的爆炸特性。研究结果表明:在距离点火源1.2 m之前,前驱冲击波尚未形成,超压历史曲线只有1个极值;在距离点火源1.4 m之后,前驱冲击波和火焰锋面分别形成2个超压极值。最大超压随着距离的增大先逐渐减小至最小值160.459 kPa,随后开始增大,直至达到最大值204.235 kPa,接着又开始减小。火焰传播速度在距离点火源0.72 m时为212.5 m/s,随着传播距离的增加而逐渐增大,到距离点火源3.2 m处增加到381.3 m/s。  相似文献   

16.
基于图像处理的管道瓦斯爆炸火焰传播速度特征   总被引:2,自引:0,他引:2       下载免费PDF全文
为研究瓦斯/空气预混气体爆炸火焰传播速度特征,利用瓦斯爆炸实验系统开展了9.5%体积分数下的瓦斯爆炸实验,通过高速摄影系统拍摄了爆炸火焰传播图像;分析提出了利用图像相关系数法计算瓦斯爆炸火焰传播速度的基本原理和方法,计算分析了9.5%体积分数瓦斯爆炸全过程中的火焰传播速度动态变化规律。结果表明:爆炸火焰处于加速、减速、反向传播,再加速、减速直至熄灭的过程,火焰不断震荡。进一步地对爆炸火焰进行了细化分析,通过对预处理图像进行横向和纵向的等分,计算视窗中不同部分的火焰传播速度,并与按整体计算的速度进行对比验证。利用该方法可以计算瓦斯爆炸火焰充满整个管道时的传播速度,为研究瓦斯或者其他气体爆炸火焰传播规律提供了一种新途径。  相似文献   

17.
 为了探究煤矿瓦斯爆炸事故中瓦斯爆炸火焰锋面特征,在实验室模拟巷道的小型管道内进行瓦斯爆炸火焰传播实验。在管道内同一截面处,利用微细热电偶、离子探针、压力传感器及光电传感器同时测得了火焰锋面温度、离子电流强度、压力、光信号。对四种火焰锋面参数信号比较分析,结果表明:传播火焰阵面的火焰光信号、温度信号、离子电流信号稍快于压力信号,瓦斯浓度为10.17%的传播火焰在测点处火焰锋面最高温度值为1238.8℃,最高压力值为2.28atm,最高离子电流强度值为258nA;处理热电偶温度信号计算出的火焰锋面厚度为44.8cm和离子电流信号计算出的火焰锋面厚度为68.5cm,两者属于同一数量级。实验结论为进一步认识瓦斯爆炸火焰锋面在瓦斯爆炸事故中的作用和矿井防爆设备和预警设计提供一定的参考依据。  相似文献   

18.
开展了施加超细惰性SiO_2及活性NaHCO_3粉体对甲烷/空气预混物爆炸层流火焰传播影响的研究,利用高速摄像及纹影系统为主要手段,探究了火焰微观结构及全程火焰传播速度的变化,以及爆炸压力增长进程等参数的变化趋势。结果表明,添加少量SiO_2超细粉体后,火焰传播得以强化,粉体施加量为50 g/m~3量级时,火焰传播速度增长近1倍,提高粉体浓度,其物理作用的抑制效能方能逐步体现,粉体施加量提高到150 g/m~3时,对火焰扰动导致的燃烧强化与吸热抑制作用可相抵消。而施加超细NaHCO_3粉体后,传播速度得以明显抑制,火焰阵面被分割成蜂窝状,抑制程度与施加量成正比,当NaHCO_3的质量浓度达到150 g/m~3时,能够将爆炸火焰完全抑制。施加超细NaHCO_3粉体后,爆炸压力的增长进程明显减缓,而施加超细惰性SiO_2对爆炸压力的抑制效能并不显著。  相似文献   

19.
Using a 20 L spherical explosion suppressing test system, the largest gas explosion pressure and maximum pressure rising rate with additives of ultra-fine ABC dry powder and diatomite powder were tested and compared, and the explosion suppression effect of the two kinds of powder was analyzed. Experimental results show that both powders can suppress gas explosion and ABC dry powder is superior to diatomite powder. Adding two powders under the same experimental conditions, when methane concentration is 7.0%, the maximum explosion pressure decreased 39% and 4%, respectively, while the rising rate of the maximum pressure decreased 80% and 53%, respectively. When methane concentration is 9.5%, the maximum explosion pressure decreased 14% and 12%, respectively, the rising rate of maximum pressure decreased 62% and 27%, respectively, the maximum explosion pressure decreased 23% and 18%, respectively, while the rising rate of the maximum pressure decreased 77% and 70%, respectively. When methane concentration is 12.0%, the explosion suppression effect of ultra-fine ABC dry powder is not affected by the methane concentration, and the explosion suppression effect of diatomite powder under high methane concentrations is more obvious.  相似文献   

20.
在Φ700 mm管道中进行了瓦斯爆炸压力峰值、火焰传播速度的试验研究,对不同点火能量条件下的瓦斯—空气混合气体爆炸试验研究结果表明:爆炸压力峰值在沿管道的传播过程中,从爆源点附近是先增大后减小,然后再逐渐增大的,且最大压力峰值出现在出口附近;火焰传播速度随着传播距离的增大而逐渐增大;点火能量对爆炸压力峰值、火焰传播速度等都有重要影响。这些研究结果为煤矿井下隔抑爆装置和瓦斯输送管道隔抑爆装置的研制及安装技术规范的制订奠定了理论基础,也为煤矿瓦斯爆炸事故调查分析提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号