首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
管道中煤尘爆炸特性实验   总被引:4,自引:2,他引:2       下载免费PDF全文
宫广东 《煤炭学报》2010,35(4):609-612
在长度为32.4 m、内径为199 mm的圆形管道中采用强点火方式对甲烷-空气混合物及甲烷-煤尘-空气混合物爆炸超压传播规律及爆速进行了研究。研究结果表明:强点火条件下甲烷-空气混合物的最大爆压和爆速分别为4 MPa、1 766 m/s,在标准状态瓦斯爆炸极限浓度外2.5%、4.1%、15.2%时也出现稳定爆轰。相同浓度甲烷-煤尘-空气混合物爆炸超压及爆速要大于甲烷-空气、煤尘-空气混合物,甲烷-煤尘-空气混合物在爆炸当量浓度时,随着煤尘浓度越大,瓦斯浓度越小,爆炸超压和爆速越小。  相似文献   

2.
毕明树  李江波 《煤炭学报》2010,35(8):1298-1302
在1.2 m长竖直爆炸管内对不同初始条件下的甲烷-煤粉混合物进行了弱点火火焰传播实验。分别考察了甲烷浓度、煤粉浓度、煤粉粒径以及点火延迟时间对复合爆炸火焰传播特性的影响。结果表明,煤粉的存在使得纯甲烷在空气中爆炸火焰传播速度显著增大,最大火焰传播速度出现在距离点火端0.425 m(长径比等于6)处;火焰传播至长管末端壁面后,爆炸压力达到最大值;甲烷浓度越接近化学当量比,火焰传播速度越快;火焰传播速度随煤粉浓度和点火延迟时间的变化趋势为先增大后减小,最佳煤粉浓度为500 g/m3,最佳点火延迟时间为500 ms;在一定粒径范围内,火焰传播速度随着煤粉粒径的增大而减小。  相似文献   

3.
为研究不同湍流环境下,煤尘对甲烷爆炸特性的影响,基于20 L爆炸球采用0、25、50、100、200 g/m^3的煤尘分别与6.5%、9.5%、12%的甲烷在点火延迟时间60 ms和120 ms的条件下进行混合爆炸实验。结果表明:点火延迟时间的增大对单相甲烷爆炸最大爆炸压力影响较小,显著降低最大压力上升速率;有煤尘参与时,3种甲烷浓度下,点火延迟时间的提高能够降低最大爆炸压力和最大压力上升速率,当甲烷浓度为9.5%时,2种点火延迟时间下,对应的最佳煤尘浓度不同,点火延迟时间越小,最佳煤尘浓度越小,甲烷浓度为12%时,点火延迟时间为60 ms时,最大爆炸压力和最大压力上升速率对高浓度煤尘比较敏感,火延迟时间为120 ms时,最大爆炸压力和最大压力上升速率对低浓度煤尘较为敏感。  相似文献   

4.
甲烷-煤尘复合爆炸威力实验   总被引:4,自引:0,他引:4       下载免费PDF全文
毕明树  王洪雨 《煤炭学报》2008,33(7):784-788
建立了由压力变送器、数据采集卡、计算机和电极点火装置组成的密闭空间甲烷-煤尘复合爆炸实验系统,动态响应时间小于1 ms,测试精度为0.5级.对甲烷-煤尘复合爆炸威力进行了系统的实验研究.结果表明:密闭空间内甲烷-煤尘复合爆炸的最危险爆炸条件为甲烷浓度5%,煤尘浓度500 g/m3,煤尘粒径26 μm,点火延迟时间40 ms;最大爆炸压力与甲烷浓度、煤尘浓度和点火延迟时间呈二次函数关系;最大爆炸压力随着煤尘粒径的增大而减小.甲烷的存在使得纯煤尘在空气中的爆炸下限降低,而爆炸压力增大;同样,煤尘的存在使得甲烷的爆炸下限降低,而爆炸压力升高.  相似文献   

5.
在竖直长管内进行弱点火条件下甲烷—煤粉复合爆炸实验,研究了甲烷煤粉配比浓度、煤粉粒径、点火延迟时间等初始状态参数对复合爆炸特性的影响。结果表明:火焰传播越快,压力上升越显著,最大压力上升速率出现在爆炸初期,当火焰传播至管末端后,压力达到最大值;低浓度甲烷添加煤粉后,爆炸压力显著增大;煤粉粒径越小,复合爆炸压力越大,压力上升速率越大;最大爆炸压力和最大压力上升速率随着煤粉浓度增大和点火延迟时间增加先上升后下降,存在峰值点。  相似文献   

6.
瓦斯煤尘复合爆炸严重影响了煤矿的安全生产,造成了大量的生产损失与人员伤亡。研发能应用在煤矿中高湿低温等复杂环境中的抑爆剂成为了研究的难点与热点。为研发出新型改性高岭土瓦斯煤尘抑爆剂,通过插层改性的方法制备了3种改性高岭土抑爆剂,采用热重分析、扫描电镜和红外光谱分析对样品的热稳定性、表面结构以及官能团变化进行了研究。选用重庆南桐煤样,通过标准筛对煤样进行筛分,通过粒径扫描与扫描电镜观测了煤粉的粒径分布与表面形貌。使用20 L球型爆炸系统对抑制剂抑制瓦斯煤尘爆炸的特性进行了研究,探究改性后高岭土对爆炸最大压力、最大压力上升速率及爆炸峰值时间等爆炸特征参数的影响;基于粉体表征结果及抑爆数据对改性高岭土抑制作用下的瓦斯煤尘爆炸的抑爆机理进行了分析。结果表明:改性高岭土抑爆剂兼具高岭土及插层粒子的双重抑爆效果,改善了高岭土的团聚现象,同时氨基磺酸铵粒子提升了高岭土的热解与抑爆性能。对瓦斯煤尘复合爆炸的抑制性能明显优于改性前粉体,且抑爆效果随着抑制剂质量浓度增加而增大,存在临界质量浓度,试验表明,当改性高岭土与煤尘比例为2∶3,且质量浓度为0.175 g/L时,最大爆炸压力的降幅达到了32.6%,爆炸峰值时间延缓了0.45 s,展现出最佳的抑爆效果。  相似文献   

7.
瓦斯煤尘复合爆炸严重影响了煤矿的安全生产,造成了大量的生产损失与人员伤亡。研发能应用在煤矿中高湿低温等复杂环境中的抑爆剂成为了研究的难点与热点。为研发出新型改性高岭土瓦斯煤尘抑爆剂,通过插层改性的方法制备了3种改性高岭土抑爆剂,采用热重分析、扫描电镜和红外光谱分析对样品的热稳定性、表面结构以及官能团变化进行了研究。选用重庆南桐煤样,通过标准筛对煤样进行筛分,通过粒径扫描与扫描电镜观测了煤粉的粒径分布与表面形貌。使用20 L球型爆炸系统对抑制剂抑制瓦斯煤尘爆炸的特性进行了研究,探究改性后高岭土对爆炸最大压力、最大压力上升速率及爆炸峰值时间等爆炸特征参数的影响;基于粉体表征结果及抑爆数据对改性高岭土抑制作用下的瓦斯煤尘爆炸的抑爆机理进行了分析。结果表明:改性高岭土抑爆剂兼具高岭土及插层粒子的双重抑爆效果,改善了高岭土的团聚现象,同时氨基磺酸铵粒子提升了高岭土的热解与抑爆性能。对瓦斯煤尘复合爆炸的抑制性能明显优于改性前粉体,且抑爆效果随着抑制剂质量浓度增加而增大,存在临界质量浓度,试验表明,当改性高岭土与煤尘比例为2∶3,且质量浓度为0.175 g/L时,最大爆炸压力的降幅达到了32.6%,爆炸峰值时间延缓了0.45 s,展现出最佳的抑爆效果。  相似文献   

8.
This paper utilises FLUENT software to simulate the spraying and explosion of coal dust in a spherical explosion chamber. The influence of particle size on coal dust spraying is analysed. Explosion easily develops for small particle sizes under the same conditions of coal dust concentration and ignition temperature. For large-size coal dust particles, the speeds of release and transmission reduce dramatically due to lack of oxygen inside. Explosion is very difficult to develop in such conditions. Coal dusts with smaller particle size distribute uniformly in the chamber, whereas larger particles concentrate in parts of the chamber. The influence of coal dust concentration, ignition temperature and particle size on the pressure of coal dust explosion is also studied. The results show that, when ignition temperature is less than a certain value, the maximum pressure increases rapidly with the growth of ignition temperature. As ignition temperature is larger than the value, the change of the maximum pressure is small. The maximum explosion pressure increases first and then decreases with the increase of coal dust concentration. Because the inside of large size particles burn only partially due to lack of oxygen and slow combustion heat release and transfer, the decrease of the maximum explosion pressure is proportional with the increase of particle size.  相似文献   

9.
瓦斯和煤尘复合爆炸是煤矿井下爆炸灾害的主要形式之一,研究瓦斯/煤尘复合爆炸下限变化规律,是有效防治煤矿爆炸灾害的必备条件。为研究煤尘组分对瓦斯/煤尘复合爆炸下限的影响,特选用2种组分不同的煤尘(烟煤和无烟煤)。依据EN 14034标准,使用10 kJ化学点火头在标准20L球形爆炸容器中,分别对2种煤尘的最小爆炸浓度、相同试验条件下的瓦斯爆炸下限以及煤尘与瓦斯的复合爆炸下限进行了测量。试验测得烟煤和无烟煤的最小爆炸浓度分别为50 g/m^3和70 g/m^3,瓦斯爆炸下限为4%。当煤尘中分别通入1%、2%、3%、4%的瓦斯后,烟煤最小爆炸浓度分别降低至40、20、5、0 g/m^3,无烟煤最小爆炸浓度分别降低至50、20、5、0 g/m^3。基于上述测量结果,对比分析了煤尘组分对瓦斯/煤尘复合爆炸下限变化规律的影响,并探讨了Le Chatelier、Bartknecht、Jiang等气粉复合爆炸下限预测模型对瓦斯/煤尘复合体系的适用性。结果表明:2种煤尘的最小爆炸浓度均随瓦斯浓度的增大而降低,但挥发分含量低的煤尘降幅更大,即瓦斯对低挥发分煤尘最小爆炸浓度的影响更为显著。Jiang模型预测值远远偏离实际测量值;Le Chatelier模型预测值高于实际测量值,且误差随瓦斯浓度的增大而增大;Bartknecht模型适用性相对较好,且更适用于低挥发分瓦斯/煤尘复合体系。  相似文献   

10.
基于20 L球形爆炸装置的煤尘爆炸特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用标准的20 L爆炸球实验装置,研究了3种不同煤质的煤尘及瓦斯煤尘混合物的爆炸特性,获得了不同实验条件下煤尘的爆炸特征参数,并给出了定量评价。研究结果显示:不同煤质特性煤尘的爆炸特性存在显著差异,在实验选定的粉尘浓度范围内,煤尘的爆炸超压及超压的上升速率随粉尘浓度基本呈先增加后降低的变化趋势;随着爆炸环境初始压力的增加,显著延长了煤尘析出的可燃性挥发分气体的火焰发展期,使得煤尘的爆炸参数随初始压力均呈现升高的变化规律;煤尘的爆炸特性随混合物中瓦斯气体的含量呈先增加后降低的趋势,初始少量瓦斯气体的加入显著改善与提高了瓦斯煤尘混合物的爆炸特性,降低了瓦斯煤尘混合物的爆炸下限。采用图像处理的方法对煤尘爆炸产物颗粒表面的结构特性进行了半定量分析,获得了产物颗粒表面的孔隙形状因子及其分布。  相似文献   

11.
为揭示管道内甲烷-煤尘预混湍流特征及爆炸火焰传播过程,构建了竖直管道内甲烷-煤尘预混扩散及爆炸物理数学模型;基于流体力学及传热-传质理论,对管道内甲烷-煤尘扩散特征和爆炸过程进行了数值模拟。划分了管道内气固两相扩散特征阶段,分析了初始真空度和进气压力对扩散湍流强度的影响规律;研究了煤尘粒径、浓度及甲烷浓度对爆炸最大压力及最大爆炸压力上升速率的影响特征;揭示了管道内甲烷-煤尘预混爆炸过程中火焰传播特征及爆炸机制。结果表明:煤尘颗粒在竖直管道罐内扩散可分为快速注入、减速分散、稳定和沉降4个连续阶段,初始真空度及进气压力对湍流强度均有影响;爆炸过程中,不同时刻下管道整体爆炸压力场基本均匀分布。甲烷浓度、煤尘浓度及粒径与最大爆炸压力P_(max)及最大爆炸压力上升速率(dP/dt)_(max)均呈现二次函数关系;不同时刻下爆炸火焰结构及火焰高度、火焰传播速度的模拟与试验结果具有较好的一致性,火焰结构呈现"月牙-S-下凹月牙-指尖"传播至爆炸结束。温度分布不均,高温区集中在管道上部和中下部。火焰传播速度先增大后减小,后期呈现震荡性特征。  相似文献   

12.
文虎  王秋红  邓军  罗振敏 《煤炭学报》2009,34(11):1479-1482
采用20 L的球形不锈钢爆炸罐试验系统,考察不同浓度Al(OH)3超细粉体抑制瓦斯爆炸的效果.实验结果表明,随着Al(OH)3粉体浓度的增加,甲烷最大爆炸压力先减小后增大,即存在控制瓦斯爆炸的最佳的粉体浓度.当甲烷浓度为9.5%时,1.3 μm超细粉体Al(OH)3的最佳控爆浓度约为250 g/m3,此粉体浓度下的最大爆炸压力、最大压力上升速率、到达最大爆炸压力的时间分别为0.583 MPa,9.082 MPa/s,190 ms;当甲烷浓度为7.0%时的最佳控爆浓度约为200 g/m3,此粉体浓度下的最大爆炸压力、最大压力上升速率、到达最大爆炸压力的时间分别为0.474 MPa,3.76 MPa/s,400 ms.  相似文献   

13.
张江石  孙龙浩 《煤炭学报》2019,44(4):1154-1160
煤矿工作面煤尘呈多分散性,因此采用单一粒径的煤样评估煤尘爆炸风险存在缺陷。为了研究分散度对煤尘爆炸特性的影响规律,找出合适的平均粒径表示方式来评估分散度对爆炸风险的影响,以5种粒径分布范围相同但分散度不同的煤样为研究对象,采用20 L爆炸球实验装置,测量样品的最大爆炸压力P_(ex)、最大爆炸压力上升速率(dp/dt)_(ex)、开始点火至最大爆炸压力的时间段t_1和开始点火至最大爆炸压力上升速率的时间段t_2四个参数。后续采用热值分析、扫描电镜试验方法探究不同分散度煤尘的反应程度。借助方差分析和斯皮尔曼相关性分析研究测量结果组间的差异性、不同粒径表示方式与爆炸特性参数的相关性。实验结果表明:对于具有相同粒径分布的煤粉,分散度对煤粉爆炸反应速率影响较大。小粒径煤尘颗粒的质量分数越大,反应速率越快,反应越充分,释放的能量越大。当小粒径煤尘质量分数达到30%时,最大爆炸压力上升速率显著增大,t_1和t_2明显减小。粒径最小的原始样品3的爆炸产物热值最低,且爆炸产物表面形成了较为丰富的孔洞结构,说明小粒径煤尘较快的脱挥发速率能增加爆炸的反应程度。D_(10),D_(25)(为投影面积的10%和25%的颗粒直径)、D_(3,2)(索特尔直径)与最大爆炸压力上升速率、t_1和t_2三个参数的斯皮尔曼相关系数均落在高度相关和显著相关的区间,呈现出较好的相关性。对于多分散性的煤尘,D_(10),D_(25)和D_(3,2)可以较好的评估分散度对煤尘爆炸特性的影响。  相似文献   

14.
为研究煤质指标对煤尘爆炸的影响,通过20 L球形爆炸容器对具有不同工业成分的煤尘爆炸最大压力上升速率进行测定。运用SPSS软件对测得的煤质指标数据进行科学合理的分析,计算不同煤质指标间的相关系数。结果表明,影响煤尘爆炸最大压力上升速率的指标数据之间具有较大的相关性,空气干燥基下的灰分与固定碳之间的相关系数高达-0.963,属于高度相关。通过主成分分析法提取出"抑制因子"和"激励因子"2大主成分,运用多元线性回归方法建立煤质指标与爆炸最大压力上升速率的计算模型,模型拟合度R值为90.6%。  相似文献   

15.
粉尘云爆炸下限是表征粉尘易燃易爆危险性的主要参数,相对精确地测试并表示粉尘云爆炸下限对评估和预防粉尘爆炸灾害是十分重要的。基于统计分析的Logistic回归模型,应用以概率表示粉尘云爆炸下限的计算方法,在20 L球形爆炸罐中对不同粒径的煤粉-空气混合物进行爆炸下限测试实验,利用SPSS统计分析软件计算得到不同粒径、不同实验次数下煤粉点火成功概率-浓度分布曲线,结果表明不同点火概率下的爆炸下限均随粒径的减小而呈现逐渐减小的趋势,且粉尘粒径越小,点火成功概率从p=10%增至p=90%的浓度区间越窄,即其燃爆特性越稳定。实验次数对爆炸下限概率分布存在影响,实验次数越多,爆炸下限概率分布的浓度区间越窄,但点火概率为50%的浓度值与实验次数无关,是研究粉尘爆炸下限的关键值。与其他计算方法的结果相比,以概率表示特定物质的爆炸下限更符合实际情况,更能满足不同生产环境对安全控制的需要。  相似文献   

16.
超细水雾-多孔材料协同抑制瓦斯爆炸实验研究   总被引:3,自引:0,他引:3       下载免费PDF全文
余明高  刘梦茹  温小萍  裴蓓 《煤炭学报》2019,44(5):1562-1569
为探究超细水雾与多孔介质在协同作用下对多孔介质淬熄效果以及多孔介质上游爆炸超压的影响,自行设计并搭建了尺寸为80 mm×80 mm×1 000 mm透明有机玻璃瓦斯爆炸管道实验平台,研究超细水雾质量分数、多孔材料孔径及孔隙率对9. 5%甲烷压的协同抑制效果。实验结果表明,改变超细水雾质量分数、多孔材料孔径以及孔隙率,在多孔材料上游,最大火焰传播速度和最大爆炸超压有着显著变化,随着超细水雾质量分数增加,火焰锋面传播速度峰值和爆炸超压逐渐减小,爆炸超压峰值出现时间随之缩短,而随着孔径的减小,火焰锋面传播速度也逐渐减小,压力衰减率明显增加。同时,超细水雾和多孔材料的组合方式对瓦斯爆炸具有耦合抑制作用,管道内通入超细水雾可吸收反应区大量热能,降低反应速率与火焰传播速度,此外多孔材料的存在吸收了部分前驱冲击波,破坏正反馈机制,因此两者协同抑制优于单一抑制效果。放置在管道中的多孔材料使得传播火焰淬熄,且添加的超细水雾降低了多孔材料上游的超压,但是一旦多孔介质淬熄失败,火焰湍流加剧,可能会导致更为严重的事故发生。此外,与9. 5%甲空气预混气相比,孔隙率为87%,孔隙密度为20 PPI和超细水雾质量浓度为1 453. 1 g s,下降比例达到44. 23%,且多孔材料上游的最大爆炸超压为6. 13 kPa,降低了40. 62%,抑制效果最明显。  相似文献   

17.
In order to study the gas explosion suppression performance based on ferrocene, the self-constructed experimental facility was used to accomplish the experiment of gas explosion suppression. By means of thermogravimetric analysis, the thermal characteristics of ferrocene have been gotten and the gas explosion suppression mechanism of ferrocene has been analyzed. The results show that ferrocene had good effects on gas explosion suppression, and the explosion pressure and flame propagation speed declined obviously. When ferrocene concentration is 0.08 g/L and methane volume concentration is 9.5%, the maximum explosion overpressure and maximum flame propagation speed of methane-air respectively decreased by about 59.5% and 19.6%, respectively. TG and DSC curves showed that the mass loss of ferrocene consists of two processes, which are sublimation and lattice fracture. The temperature of mass loss ranged from 128 °C to 230 °C. The results showed profoundly theoretical significance to gas explosion suppression by ferrocene in coal mines.  相似文献   

18.
初始压力对矿井可燃性气体爆炸特性的影响   总被引:3,自引:0,他引:3  
王华  邓军  葛岭梅 《煤炭学报》2011,36(3):423-428
采用20 L近球型爆炸反应器对不同初始压力下矿井单元及多元可燃性气体的爆炸特性进行了实验研究,并结合碰撞理论和火焰传播机理对实验结果进行了理论分析。实验结果表明:初始压力增加使可燃性气体的爆炸危险性增强,但使其到达最大爆炸超压的时间略有延长;最佳浓度与爆炸上限之间的可燃性气体较最佳浓度与爆炸下限之间的可燃性气体对初始压力更敏感;相同的初始压力下,矿井多元可燃性气体较单元可燃性气体甲烷爆炸的危险性更高,破坏性更强。  相似文献   

19.
二氧化碳-超细水雾抑制甲烷爆炸的实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
余明高  朱新娜  裴蓓  杨勇 《煤炭学报》2015,40(12):2843-2848
为了研究受限空间内二氧化碳-超细水雾对甲烷爆炸的影响,通过自行设计的120mm×120mm×840mm半封闭透明的甲烷爆炸实验台,开展不同气雾比二氧化碳-超细水雾对化学当量比甲烷-空气预混气体的抑爆研究。实验结果表明:二氧化碳和超细水雾结合的抑爆效果要优于单独使用任何一种抑制剂效果之和;CO2体积分数一定的情况下,甲烷气体的爆炸压力、压升速率和爆炸火焰的传播速度均随着超细水雾体积量的增加而明显减小。当单独加入体积分数为2%CO2和1.4mL超细水雾时,两种工况下压力峰值下降之和为72.3mbar;而在两者共同作用下,9.5%甲烷爆炸的超压峰值下降了92.95mbar,说明二氧化碳-超细水雾抑制甲烷爆炸时具有协同效应。  相似文献   

20.
初始压力对矿井瓦斯爆炸过程影响的理论研究   总被引:5,自引:0,他引:5  
刘向军  陈昊 《矿冶》2006,15(1):5-9
初始压力是矿井瓦斯爆炸的发生和传播过程中的一个重要影响因素,本文研究了初始压力对于瓦斯混合气体的最低点燃温度、可燃上限的影响,并根据质量、动量、能量守恒原理,推导建立了考虑初始压力p0时的爆轰参数计算公式,计算出煤矿巷道不同初始压力下的爆轰参数,分析瓦斯混合气体的初始压力p0对于瓦斯爆轰各个参数的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号