首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dry sliding wear tests were performed on AZ31 alloy using a pin-on-disc configuration under the loads of 5–360 N and sliding speeds of 0.1–1.5 m/s. Friction and wear characteristics of AZ31 alloy were investigated as a function of the load and sliding speed. Wear mechanisms for AZ31 alloy were characterized by scanning electron microscopy. The wear behavior in mild and severe wear regimes was described in terms of plastic deformation and microstructure evolution in subsurface, and surface hardness change and temperature rise of worn surfaces. The results revealed that surface strain hardening caused by large plastic deformation played an important role in maintaining a low slope of wear rate in mild wear regime, while surface thermal softening originating from dynamic recrystallization and surface melting were responsible for a rapid wear in severe wear regime.  相似文献   

2.
The differences in the microstructure evolution during laser-roller hemming and conventional roller hemming (done at room temperature) of commercial-grade AZ31B sheet were studied using electron backscatter diffraction (EBSD). It was observed that the flanging operation, done as a precursor to roller hemming, produced a heterogeneous grain structure that remained throughout the subsequent hemming steps. Laser heating, applied during the roller passes, significantly reduced the amount of both extension and contraction twinning in the inner and outer band, respectively. More importantly, after two roller passes without laser heating, extension twinning in the inner band seemed to saturate. This forced the material in the inner band to accommodate further deformation by harder mechanisms, such as pyramidal slip and contraction twinning, during the third roller pass when failure occurred. The laser-hemmed samples exhibited much lower hardness values, especially in the inner band, which was deemed to be largely responsible for the success of the hemming operation with laser heating.  相似文献   

3.
The tension and compression deformation behavior of extruded magnesium-1 wt pct manganese alloys with nominally 0.3 wt pct (MN10) and 1 wt pct neodymium (MN11) was studied over the temperature range of 298 K to 523 K (25 °C to 250 °C). Nd additions to Mg alloys tend to reduce the strong basal texture exhibited by conventional wrought Mg alloys and this work was intended to study the effect of Nd on the deformation behavior of Mg alloys. In situ tensile and compressive experiments were performed using a scanning electron microscopy, and electron backscatter diffraction was performed both before and after the deformation. A slip trace analysis technique was used to identify the distribution of the deformation systems as a function of strain, and based on this analysis and the texture of the undeformed samples, the critical resolved shear stress ratios between the deformation systems were estimated. In the case of MN11, the deformation behavior under tension at all temperatures was dominated by slip, while in compression, extension twinning was the major deformation mode. In tension at 323 K (50 °C), extension twinning, basal, prismatic 〈a〉, and pyramidal 〈c + a〉 slip were active in MN11. Much less extension twinning was observed at 423 K (150 °C), while basal slip and prismatic 〈a〉 slip were dominant and presented similar relative activities. At 523 K (250 °C), twinning was not observed, and basal slip controlled the deformation. With the reduction of Nd content, less slip deformation and more twinning were observed during the tensile deformation. However, like for MN11, the extent of twinning in MN10 decreased with increasing temperature and basal slip was the primary deformation mode at elevated temperatures. Extension twinning was the major deformation mode under compression for all test temperatures in MN10 and MN11. The tensile strength decreased with increasing temperature for both alloys, where MN10 was slightly stronger than MN11 at 323 K (50 °C), which was expected to be a result of the stronger basal texture exhibited by MN10 due to its lower Nd content. However, MN11 maintained its strength more at elevated temperatures compared with MN10, and this was explained to be a result of the greater Nd content.  相似文献   

4.
5.
Laser keyhole welding of Ti-6Al-4V titanium alloy to AZ31B magnesium alloy was developed, and the correlations of process parameters, joint properties, and bonding mechanism were studied. The results show that the offset from the laser beam center on AZ31B side to the edge of the weld seam plays a big role in the joint properties by changing the power density irradiated at the Ti–Mg initial interface. The optimal range of the offset is 0.3 to 0.4mm in the present study. Some lamellar and granular Ti-rich mixtures are observed in the fusion zone, which is formed by intermixing melted Ti-6Al-4V with liquid AZ31B. The maximum ultimate tensile strength of the joints reaches 266 MPa. Furthermore, the fracture surface consists of scraggly remaining weld metal and smooth Ti surface. The higher the failure strength, the smaller the proportion of smooth Ti surface to whole interface is. Finally, the bonding mechanism of the interfacial layer is summarized by the morphologies and test results of fracture surfaces.  相似文献   

6.
利用平行平面正碰撞方法产生的冲击波对Mg-Gd-Y与AZ31两种典型变形镁合金加载,并对回收后的材料进行准静态压缩实验,采用金相显微镜和透射电子显微镜进行微观组织分析。冲击波加载后,原始固溶态Mg-Gd-Y合金的屈服强度增加了21 MPa,而时效峰状态合金的屈服强度仅增加4 MPa,时效处理后产生的析出相β’使合金的屈服强度增加幅度明显减少;然而,AZ31镁合金的屈服强度增加了40 MPa。Mg-Gd-Y与AZ31镁合金的冲击波加载后力学响应的差异取决于冲击波过程中两者所具有的不同变形机制,冲击波变形后Mg-Gd-Y合金中的孪晶体积分数非常少,其变形机制以位错滑移为主。相比之下,冲击波加载后的AZ31合金中产生了大量孪晶,孪生是该合金的一种重要变形机制。孪晶界在后续再加载过程中成为位错滑移的障碍,从而导致AZ31镁合金表现出更为显著的冲击波强化效果。  相似文献   

7.
The mechanical behavior of the as-extruded and heat-treated Mg-1.5Zn-0.6Zr and Mg-1.5Zn-0.6Zr-2Er alloys was investigated and correlated with microstructure evolution. Deformation mechanisms are detailed. No evidence of twinning was observed under compression in the Er-bearing alloy throughout the grain size range of ~5 to 27 μm at a strain rate of 0.001 or 1/s. The compressive yield strength followed a Hall–Petch relation with a slope of ~10.3 MPa/mm1/2. Er played a major role in the pyramidal 〈c+a〉 slip that was identified as a dominant plastic deformation mechanism. The CRSS for 〈c+a〉 slip system was greatly reduced and was 98 MPa in the as-extruded alloy. While it did not change the mechanical response of the Mg-1.5Zn-0.6Zr-2Er alloy, annealing was found to promote dissolution of Zn in the Mg matrix, leading to an increase in CRSS for extension twinning in the heat-treated Mg-1.5Zn-0.6Zr alloy. As a result, twinning was only observed under a higher strain rate of 1/s in compression. The CRSS for extension twinning for the heat-treated alloy with a grain size of ~28 μm was estimated to be 40 MPa, a bit lower than that for the Er-bearing alloy of the same grain size, which was 42 MPa.  相似文献   

8.
An investigation on the plastic behavior of AZ31 magnesium alloy under ultrasonic vibration(with a frequency of 15 kHz and a maximum output of 2 kW)during the process of tension at room temperature was conducted to reveal the volume effect of the vibrated plastic deformation of AZ31.The characteristics of mechanical properties and microstructures of AZ31 under routine and vibrated tensile processes with different amplitudes were compared.It is found that ultrasonic vibration has a remarkable influence on the plastic behavior of AZ31 which can be summarized into two opposite aspects: the softening effect which reduces the flow resistance and improves the plasticity,and the hardening effect which decreases the formability.When a lower amplitude or vibration energy is applied to the tensile sample,the softening effect dominates,leading to a decrease of AZ31 deformation resistance with an increase of formability.Under the application of a high-vibrating amplitude,the hardening effect dominates,resulting in the decline of plasticity and brittle fracture of the samples.  相似文献   

9.
The constitutive behavior of a rare-earth magnesium alloy ZEK100 rolled sheet is studied at room temperature over a wide range of strain rates. This alloy displays a weakened basal texture compared to conventional AZ31B sheet which leads to increased ductility; however, a strong orientation dependency persists. An interesting feature of the ZEK100 behavior is twinning at first yield under transverse direction (TD) tensile loading that is not seen in AZ31B. The subsequent work hardening behavior is shown to be stronger in the TD when compared to the rolling and 45 deg directions. One particularly striking feature of this alloy is a significant dependency of the strain rate sensitivity on orientation. The yield strength under compressive loading in all directions and under tensile loading in the TD direction is controlled by twinning and is rate insensitive. In contrast, the yield strength under rolling direction tensile loading is controlled by non-basal slip and is strongly rate sensitive. The cause of the in-plane anisotropy in terms of both strength and strain rate sensitivity is attributed to the initial crystallographic texture and operative deformation mechanisms as confirmed by measurements of deformed texture. Rate-sensitive constitutive fits are provided of the tensile stress–strain curves to the Zerilli–Armstrong[1] hcp material model and of the compressive response to a new constitutive equation due to Kurukuri et al.[2]  相似文献   

10.
Incremental equal channel angular pressing (I-ECAP) is a severe plastic deformation process used to refine grain size of metals, which allows processing very long billets. As described in the current article, an AZ31B magnesium alloy was processed for the first time by three different routes of I-ECAP, namely, A, BC, and C, at 523 K (250 °C). The structure of the material was homogenized and refined to ~5 microns of the average grain size, irrespective of the route used. Mechanical properties of the I-ECAPed samples in tension and compression were investigated. Strong influence of the processing route on yield and fracture behavior of the material was established. It was found that texture controls the mechanical properties of AZ31B magnesium alloy subjected to I-ECAP. SEM and OM techniques were used to obtain microstructural images of the I-ECAPed samples subjected to tension and compression. Increased ductility after I-ECAP was attributed to twinning suppression and facilitation of slip on basal plane. Shear bands were revealed in the samples processed by I-ECAP and subjected to tension. Tension–compression yield stress asymmetry in the samples tested along extrusion direction was suppressed in the material processed by routes BC and C. This effect was attributed to textural development and microstructural homogenization. Twinning activities in fine- and coarse-grained samples have also been studied.  相似文献   

11.

An integrated experimental and microstructure-based simulation research was carried out to study the effect of thickness and grain size on the mechanical response and deformation mechanism of AZ31 Mg foils. Equal channel angle pressing (ECAP) and subsequent annealing were applied to fabricate the billets with tailored microstructures. Ex situ micro-tensile tests of the foils were conducted to explore the meso-scale size effect. The experimental results show that the flow stress, ductility, and microstructure evolution of the foils are significantly affected by both grain size and thickness. With the increase of grain number (λ) in thickness, the flow stress curve changes from convex-up to a typical sigmoidal shape, and the extension twinning is remarkably suppressed. Full-field crystal plasticity simulations successfully captured the micromechanical interaction between dislocation slip and twinning. Specifically, the decrease of λ enhances the dominance of extension twinning on the mechanical response and ductility of the foils and further intensifies the interaction of deformation twinning on slip resistance. As a measurement for describing the combined effect of grain size and geometrical size, λ is a critical factor affecting the interaction and competition between dislocation slip and deformation twinning.

  相似文献   

12.
The microscopic damage mechanisms operating in a hot-rolled magnesium alloy AZ31B are investigated under both uniaxial and controlled triaxial loadings. Their connection to macroscopic fracture strains and fracture mode (normal vs shear) is elucidated using postmortem fractography, interrupted tests, and microscopic analysis. The fracture locus (strain-to-failure vs stress triaxiality) exhibits a maximum at moderate triaxiality, and the strain-to-failure is found to be greater in notched specimens than in initially smooth ones. A transition from twinning-induced fracture under uniaxial loading to microvoid coalescence fracture under triaxial loading is evidenced. It is argued that this transition accounts in part for the observed greater ductility in notched bars. The evolution of plastic anisotropy with stress triaxiality is also investigated. It is inferred that anisotropic plasticity at a macroscopic scale suffices to account for the observed transition in the fracture mode from flat (triaxial loading) to shear-like (uniaxial loading). Damage is found to initiate at second-phase particles and deformation twins. Fracture surfaces of broken specimens exhibit granular morphology, coarse splits, twin-sized crack traces, as well as shallow and deep dimples, in proportions that depend on the overall stress triaxiality and fracture mode. An important finding is that AZ31B has a greater tolerance to ductile damage accumulation than has been believed thus far, based on the fracture behavior in uniaxial specimens. Another finding, common to both tension and compression, is the increase in volumetric strain, the microscopic origins of which remain to be elucidated.  相似文献   

13.
《Acta Metallurgica》1980,28(1):75-88
The influence of slip character on the low cycle fatigue behaviour was investigated in the CoNi system at room temperature. Three alloys of increasing stacking fault energy (SFE) were used: Co31Ni (SFE ∼- 12 mJm−2) which deforms by slip and f.c.c. → h.c.p. strain-induced martensitic transformation, Co33Ni (SFE = 15 mJm−2) which exhibits slip and twinning and Co45Ni (SFE = 45mJm−2) which deforms only by slip with easy cross-slip. Push-pull low cycle fatigue tests were conducted under plastic strain control up to a few 104 cycles. The number of cycles to fracture was found to increase with decreasing SFE which promotes planar deformation mechanisms: the life obtained in Co31 Ni and Co33Ni alloys is respectively about 6 and 3 times higher than that of Co45Ni alloy.Measurements of striation spacings on the fracture surfaces have enabled to show that the influence of twinning on fatigue life is mainly due to a large increase of the initiation period before stage II crack propagation. This behaviour was associated with a difference in crack initiation sites along twin or h.c.p. platelets where there is a strain localization in low SFE alloys or along grain boundaries in the high SFE alloy. The increase of crack initiation period was explained on the basis of a reduced stage I crack propagation rate in the alloys exhibiting planar deformation mechanisms.  相似文献   

14.
Liquid-phase bonding between a Mg alloy (AZ31) and low-carbon steel was attempted at 773 K (500 °C) using Ag as an interlayer that forms a eutectic melt with the Mg alloy at this temperature. On the AZ31 side, eutectic melting and subsequent isothermal solidification were observed, and it was confirmed that the solidification of the eutectic liquid was promoted by the diffusion of Ag into the AZ31 base metal. On the steel side, Al was transported from AZ31 during the eutectic melting and isothermal solidification. This transported Al was enriched at the steel surface and reacted with steel to form a uniform, thin Fe-Al intermetallic compound layer. After the isothermal solidification, strong bonding was achieved via the thin intermetallic compound layer between AZ31 and steel, and no Ag remained at the bonding interface. The strength of the joint was found to be higher than the yield strength of AZ31.  相似文献   

15.
采用TIG熔-钎焊焊接方法,以镁合金焊丝为填充材料,对镁合金与镀锌钢进行连接实验,并分析热输入量对接头显微组织和力学性能的影响.热输入量过小会阻碍镁/钢界面反应层的形成而使得焊缝难以焊合,热输入量过大又会促进焊缝内部脆性第二相的长大,降低接头力学性能.接头强度随着焊接电流和焊接速度的增大都呈现先上升后下降的趋势,电流为70 A时强度达到最大,该值接近AZ31B母材的88.7%.此时断裂发生于焊缝熔焊区,断面出现大量韧窝和撕裂棱,呈现出塑性断裂特征.  相似文献   

16.
Ultrafine-grained (UFG) Mg-3Al-1Zn (AZ31) alloys with gain sizes ranging from 0.46 to 3.22 μm were prepared by equal channel angular pressing (ECAP) and annealing. The deformation structure of UFG AZ31 alloy resulting from uniaxial compression was studied by optical and electron microscopy. The deformation was noted to proceed with the development of shear bands (SBs), which has not been reported in an UFG hcp metal. Characterization of these SBs was performed, and comparison with the SBs formed in UFG bcc and fcc metals was given. { 10[`1]2} \{ 10\bar{1}2\} tension twins inside SBs were found in all specimens compressed, irrespective of the grain size. Discussion on the limiting grain size of twinning in the UFG AZ31 alloy is also given.  相似文献   

17.
18.
Seamless tubes of AZ31, AZ31 + 0.4, and 0.8 wt pctSr were extruded at elevated temperatures. By compressing pure copper inserts inside the tubes, the extruded tubes were expanded at room and elevated temperatures [373 K and 473 K (100 °C and 200 °C)]. Microstructural examinations reveal the formation of twining in the as-extruded and expanded tubes. The amount of twinning decreased with increasing level of Sr in the expanded microstructures as a result of grain refinement and of decreasing Al in solution that facilitates dislocation motion. During expansion at room temperature, AZ31 shows higher elongation and lower strength than the alloys containing Sr. At 473 K (200 °C), compared to the lower temperatures, the Sr containing alloys exhibit lower flow stress and no fracture in the strain range investigated (40 pct reduction in cylinder height). The textures of the extruded alloys contain two main components named as RD (c-axis parallel to the radial direction) and HD (c-axis parallel to the hoop direction) based on their orientation with the sample coordinates. During expansion, extension twinning in the HD grains reorients the lattice to strengthen the RD and form a new ED (c-axis parallel to the extrusion direction) component. By increasing the temperature or level of Sr, the ED component is weakened due to the decrease in twinning. During expansion, the RD grains undergo contraction and double twining which reduce the overall texture strength.  相似文献   

19.
利用有限元法研究了热辊热带(HSR-HR)、热辊冷带(NSR-HR)和冷辊热带(HSR-NR)3种不同加热方式下AZ91镁合金轧制过程热-力行为,并进行了大压下率热辊冷带工艺试验和组织性能分析.结果表明,HSR-HR、NSR-HR及HSR-NR 3种加热轧制方式的应力三轴度依次增大,中性点附近应力状态软性系数依次减小....  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号