共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanocrystalline equiatomic high-entropy alloys (HEAs) have been synthesized by mechanical alloying in the Cu-Ni-Co-Zn-Al-Ti system from the binary CuNi alloy to the hexanary CuNiCoZnAlTi alloy. An attempt also has been made to find the influence of nonequiatomic compositions on the HEA formation by varying the Cu content up to 50 at. pct (Cu x NiCoZnAlTi; x = 0, 8.33, 33.33, 49.98 at. pct). The phase formation and stability of mechanically alloyed powder at an elevated temperature (1073 K [800 °C] for 1 hour) were studied. The nanocrystalline equiatomic Cu-Ni-Co-Zn-Al-Ti alloys have a face-centered cubic (fcc) structure up to quinary compositions and have a body-centered cubic (bcc) structure in a hexanary alloy. In nonequiatomic alloys, bcc is the dominating phase in the alloys containing 0 and 8.33 at. pct of Cu, and the fcc phase was observed in alloys with 33.33 and 49.98 at. pct of Cu. The Vicker’s bulk hardness and compressive strength of the equiatomic nanocrystalline hexanary CuNiCoZnAlTi HEA after hot isostatic pressing is 8.79 GPa, and the compressive strength is 2.76 GPa. The hardness of these HEAs is higher than most commercial hard facing alloys ( e.g., Stellite, which is 4.94 GPa). 相似文献
2.
In the current study, the two alloys, Ni-20 at. pct W and Ni-35 at. pct W, were mechanically alloyed and subsequently heat treated to evaluate their structural variations using X-ray diffraction, scanning, and transmission electron microscopy, and differential thermal analysis. In addition, the effect of Fe contamination on the progress of mechanical alloying was investigated. The results showed that the Ni-20 at. pct W contained only Ni(W) solid solution even after prolonged milling times, while the Ni-35 at. pct W was amorphized after 40 hours of milling. The composition of the amorphized alloy was estimated to be Ni-31 at. pct W. Furthermore, it was demonstrated that the nanocrystalline NiW intermetallic compound was stable at temperatures greater than 1303 K (1030 °C) and did not completely vanish upon peritectoid reaction. Consequently, an exceptional grain coarsening resistance was observed at high temperatures near the melting points. The mechanisms involved in this outstanding thermal stability were also probed. 相似文献
3.
高熵合金(HEAs)是一种由5种或5种以上元素以接近等原子比的方式混合而成的一种新型合金。HEAs的概念为开发具有独特性能的先进材料提供了新的途径,这是传统的基于单一主导元素的微合金化方法无法实现的。由于Cu元素与HEAs中其他元素的混合焓均为正值,因而更容易偏聚形成富Cu的面心立方(fcc)结构。本文主要总结了合金成分、制备方法对含Cu HEAs组织结构的影响规律以及含Cu HEAs的热稳定性。例如Al的添加会使CoCrCuFeNi合金从fcc单相转变为fcc+bcc的双相结构,而Ni含量的增加则会将AlCoCrCuNi的多相组织转变为单相fcc结构。与传统铸造工艺相比,选区激光熔化和喷溅急冷等具有极高的冷却速度,限制了元素的扩散,因而制备而成的AlCoCuFeNi和AlCoCrCuFeNi合金均是bcc结构。组织结构的改变会进一步影响含Cu HEAs力学性能,因而本文也探讨了合金成分、制备工艺和服役温度与力学性能的关系。例如,V的添加可以提高合金的强度,以先进制备方法如选区激光熔化或激光粉末熔融得到的合金具有优于铸造合金的力学性能。 相似文献
4.
综述了机械合金化制备纳米晶材料的研究进展,重点介绍了高强度铝合金,铜合金,难熔金属化合物,金属储氢材料,复相烯土永磁材料等几类机械合金化纳米晶材料的制备与组织性能,指出了机械合金化技术在纳米晶材料制备方面的优势及应用前景。 相似文献
6.
Thepotentialapplicationofnanostructuredma terialsusedasnovelstructuralorfunctionalengi neeringmaterialslargelydependsontheconsolida tionofpowdersbywhichthebulknanostructuredsolidsaremade .Theretentionofthemetastablemi crostructureintheconsolidationprocessismandato ryforpreservingthesuperiormechanical,electricalorcatalyticpropertiesofthematerial.Severalau thorsshowedthatthepressure assistedsinteringisadequateforbothreachingfulldensityandprevent inggraingrowth ,besidesthenanostructuredmateri als… 相似文献
7.
采用机械合金化法成功制备Cu 40Ti 60-xZr x( x=0,10,30,50)非晶合金.研究Cu-Ti-Zr合金粉末由晶态向非晶态转变过程中的组织结构变化,探讨非晶合金的形成机制,以及非晶合金的热稳定性和晶化产物.结果表明,非晶合金直接从初始元素得到,在反应过程中没有金属间化合物出现,非晶化过程可以由间隙扩散模型来解释.Cu 40Ti xZr y非晶粉末的DSC分析表明,随着Ti含量的降低和Zr含量的升高,非晶粉末的晶化温度 Tx逐渐升高,对非晶粉末在相应的 Tx温度附近退火15min后发现,Cu 40Ti 30Zr 30合金没有析出相,Cu 40Ti 10Zr 50析出了Zr 2Cu,Cu 4Ti和少量的一些未知相. 相似文献
9.
Thermal behavior investigation of CuNiCoZnAl high-entropy alloy powder produced by mechanical alloying indicated that a FCC single-phase solid solution transformed into two new phases at 500 °C. Despite this phase transformation, no indication of intermetallic compounds or amorphous phases was detected. Heat treatment of the high-entropy alloy was then carried out for 2 hours, and the nanocrystalline structure of heat-treated milled powder was retained up to 1000 °C. Besides, grain growth of CuNiCoZnAl high-entropy alloy powder at high homologous temperatures (> 0.6 Tm) was studied, and sluggish grain growth of the powder was observed clearly. Consolidation of the alloy powder was performed by spark plasma sintering at 800 °C, and a sample with porosity of 6.87 pct and density of 7.32 g cm−3 was achieved. Elastic moduli, Vickers microhardness, and fracture toughness of the bulk sample were measured as 186 ± 17 GPa, 599 ± 31 HV, and 4.45 MPa m0.5, respectively. The evaluation of wear behavior indicated that the dominant wear mechanism was adhesive wear. Moreover, tribochemical wear (oxidation) was found to be the minor wear mechanism. The present study revealed that CuNiCoZnAl high-entropy alloy has the potential to be used in many applications that high hardness and low elastic moduli are favorable. 相似文献
10.
4种成分的Ti-Al-Si颗粒T3,T4,T5和T6通过球磨获得非晶.这些非晶在退火时的结构变化分为3个阶段:(1)球磨非晶的部分晶化并产生Ti 5Si 3;(2)其余非晶的完全晶化并依赖于颗粒中Ti和Al的组成产生钛铝金属间化合物,(3)粉末中各相的晶粒长大.晶化反应依粉末成分产生Ti 3Al,TiAl和Al 3Ti.Ti 5Si 3是晶化反应的唯一硅化物.低于800℃退火可获得纳米晶。 相似文献
12.
This study investigates the effect of plasma nitriding at 798?K (525?°C) on microstructures and the mechanical performance of Al 0.3CrFe 1.5MnNi 0.5 high-entropy alloys (HEAs) obtained using different cast and wrought processing. All the alloys can be well nitride, with a thickness of around 80? ??m, and attain a peak hardness level around Hv 1300 near the surface. The main nitride phases are CrN, AlN, and (Mn, Fe) 4N. Those of the substrates are bcc, fcc, Al-, and Ni-rich B2 precipitates, and ?? phase. Their relative amounts depend on the prior processing and also change under the heat treatment during nitriding. The formation of ?? phase during nitriding could in-situ harden the substrate to attain the suitable level required for wear applications. This gives the advantage in simplifying the processing for making a wear-resistance component or a mold since austenitizing, quench hardening, and tempering required for steels such as SACM and SKD steels are no longer required and final finishing can be accomplished before nitriding. Nitrided Al 0.3CrFe 1.5MnNi 0.5 samples have much better wear resistance than un-nitrided ones by 49 to 80?times and also exhibit superior adhesive wear resistance to conventional nitrided alloys: nitriding steel SACM-645 (AISI 7140), 316 stainless steel, and hot-mold steel SKD-61 (AISI H13) by 22 to 55?times depending on prior processing. The superiority is due to the fact that the present nitrided alloys possess a much thicker highly hardened layer than the conventional alloys. 相似文献
15.
概述了利用机械合金化法制备不同陶瓷粒子弥散强化铜合金的工艺过程以及弥散强化铜合金的组织结构和性能。讨论了弥散强化铜合金强化相的选择原则,以及此合金的应用前景。 相似文献
16.
The present study deals with the synthesis of 1.0 to 2.0 wt pct nano-TiO 2 dispersed Zr-based alloy with nominal compositions 45.0Zr-30.0Fe-20.0Ni-5.0Mo (alloy A), 44.0Zr-30.0 Fe-20.0Ni-5.0Mo-1.0TiO 2 (alloy B), 44.0Zr-30.0Fe-20.0Ni-4.5Mo-1.5TiO 2 (alloy C), and 44.0Zr-30.0Fe-20.0Ni-4.0Mo-2.0TiO 2 (alloy D) by mechanical alloying and consolidation of the milled powders using 1 GPa uniaxial pressure for 5 minutes and conventional sintering at 1673 K (1400 °C). The microstructural and phase evolution during each stage of milling and the consolidated products were studied by X-ray diffraction (XRD), scanning electron microscopy and transmission electron microscopy (TEM), and energy-dispersive spectroscopy. The particle size of the milled powder was also analyzed at systemic intervals during milling, and it showed a rapid decrease in particle size in the initial hours of milling. XRD analysis showed a fine crystallite size of 10 to 20 nm after 20 hours of milling and was confirmed by TEM. The recrystallization behavior of the milled powder was studied by differential scanning calorimetry. The hardness of the sintered Zr-based alloys was recorded in the range of 5.1 to 7.0 GPa, which is much higher than that of similar alloys, developed via the melting casting route. 相似文献
17.
Herein, the deep drawability and deep drawing behavior of an equiatomic CoCrFeMnNi HEA and its microstructure and texture evolution are first studied for future applications. The CoCrFeMnNi HEA is successfully drawn to a limit drawing ratio (LDR) of 2.14, while the planar anisotropy of the drawn cup specimen is negligible. The moderate combination of strain hardening exponent and strain rate sensitivity and the formation of deformation twins in the edge region play important roles in successful deep drawing. In the meanwhile, the texture evolution of CoCrFeMnNi HEA has similarities with conventional fcc metals. 相似文献
18.
In the current study, Ni 50Fe 50 alloy powders were prepared using a high-energy planetary ball mill. The effects of TiC addition (0, 5, 10, 20, and 30 wt pct) and milling time on the sequence of alloy formation, the microstructure, and microhardness of the product were studied. The structure of solid solution phase, the lattice parameter, lattice strain, and grain size were identified by X-ray diffraction analysis. The correlation between the apparent densities and the milling time is explained by the morphologic evolution of the powder particles occurring during the high-energy milling process. The powder morphology was examined using scanning electron microscopy. It was found that FCC γ (Fe–Ni) solid solution was formed after 10 hours of milling, and this time was reduced to 7 hours when TiC was added. Therefore, brittle particles (TiC) accelerate the milling process by increasing crystal defects leading to a shorter diffusion path. Observations of polished cross section showed uniform distribution of the reinforcement particles. The apparent density increases with the increasing TiC content. It was also found that the higher TiC amount leads to larger lattice parameter, higher internal strain, and lower grain size of the alloy. 相似文献
19.
Powder Metallurgy and Metal Ceramics - The mechanical characteristics of high-entropy alloys and their constituent metals were examined by dry friction against diamond at low sliding velocities in... 相似文献
20.
文章介绍了高熵合金块体材料和高熵合金涂层在常温环境中、高温条件下和一些特殊介质中的腐蚀行为,论述了合金元素、热处理、环境因素及制备工艺对高熵合金耐蚀性的影响,并简要分析了高熵合金耐蚀性研究面临的问题. 相似文献
|