首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Mathematical modeling of fluid flow and heat transfer of melt in a typical two-strand slab caster tundish has been done for a complete casting sequence. The complete casting sequence consists of 1 minute of tundish emptying period during the ladle transfer operation followed by 1 minute of tundish filling period by the new ladle and pouring at the normal operating level of the tundish for 46 minutes. The effect of varying ladle stream temperature conditions on the melt flow and heat transfer in the continuous casting tundish has been studied. When the ladle stream temperature decreases appreciably over the casting period, corresponding to heat loss of the melt in the ladle from the top free surface, the incoming melt temperature becomes lower than that of the melt in the bulk of the tundish after about 30 minutes from the start of teeming. This results in melt flow along the bottom of the tundish instead of the normal free surface directed flow. The ladle melt stream temperature shows little variability when the ladle has an insulated top. Corresponding to this situation, the temperature of the incoming melt remains higher than that of the melt in the bulk of the tundish and the normal free surface directed flow is maintained throughout the casting period. The product cast under such condition is expected to have a uniformly low inclusion content. The heat loss condition from the top of the ladle has been shown to be the dominant factor in determining fluid flow and heat-transfer characteristics of the melt in the tundish rather than the holding time of the melt in the ladle. Formerly Graduate Student, Department of Materials Science and Engineering, Ohio State University  相似文献   

2.
The fluid flow in a continuous casting tundish is numerically and physically simulated by means of water models. Results of residence time distribution (RTD) measurements and laser‐optical measurements (Laser Doppler Anemometry – LDA, Digital Particle Image Velocimetry‐DPIV) are used to validate the numerical results for water before the numerical simulation is transferred to the steel melt. The investigations are focused on both steady‐state and transient casting conditions. To reduce vortexing and turbulence in the tundish different types of turbo‐stoppers are installed in the water models and their influence on the spacious flow structure is discussed. The turbo‐stopper produces higher turbulence in the inlet region of the tundish, but this region is spatially more limited in relation to the flow without turbo‐stopper. Thereby a more homogeneous flow is created at the outlet of the tundish with better conditions for particle separation. Basic design criteria for the geometry of a turbo‐stopper are developed. Moreover, the processes of first tundish filling and ladle change are simulated at a downscaled water model and these results are compared with numerical simulations using a Volume of Fluid (VoF) model. This multiphase model is able to reproduce the motion of gas bubbles and waves at the free surface.  相似文献   

3.
This article presents computational and water model studies of the three-dimensional turbulent fluid flow in a two-strand tundish for steady-state and transient casting conditions. First, it presents the flow field measurements obtained at a 1:3-scale water model of the tundish with the particle-image velocimetry (PIV) method during steady-state casting. The PIV measurements were performed using the Reynolds-similarity criterion. Thereafter, numerical simulation is carried out with the computational fluid dynamic software, FLUENT, using the realizable k-ε turbulence model. The numerical model is validated using the measurement results obtained with the water model. The results of the numerical calculations are in good agreement with the PIV measurements. On this basis, the validated numerical model is adapted to simulate the 1:1-scale steel flow with boundary conditions that are derived from the real casting process. The nonisothermal, unsteady numerical calculations concerning the cooling process of steel melt inside the tundish are done for a 1:1-scale industrial facility—a 69-t two-strand tundish with a 380-t ladle. The influence of transient boundary conditions at the outlet of the tundish (one blocked strand) on the flow structure and mixing process of fluid during the casting process are investigated. The evaluation of the flow structure is performed using a zonal method, which relates the fluid flow with the mixing processes.  相似文献   

4.
S. Chatterjee 《钢铁冶炼》2017,44(6):403-412
A numerical model based on computational fluid dynamics was used to simulate the effect of non-isothermal conditions on melt flows in a multi-strand billet caster tundish. To start with, water was used as the operating fluid in a one-third scale tundish to calculate the fluid flow and temperature fields under isothermal and non-isothermal conditions. The model was then extended to the full-scale tundish with molten steel as the operating liquid in order to simulate the conditions in a real plant. It was observed that using step inputs of 10° and 23° for water and steel cases, respectively, changed the fluid flow patterns significantly, more so at locations far from the inlet, due to stronger buoyancy-driven natural convective flows. The temperature distribution and inclusion trajectories within the tundish were also affected due to the presence of non-isothermal conditions.  相似文献   

5.
六流方坯连铸中间包结构优化水模实验   总被引:5,自引:0,他引:5  
 通过六流方坯连铸中间包水模实验,研究了不同控流装置对其流动特性的影响。采用笔者提出的多流中间包流动特性分析模型及各流流动特性一致性的分析方法进行了定量描述。结果表明,带横墙和不带横墙的“V”型挡墙均能明显改善各流流动特性的一致性,与不带横墙的“V”型挡墙组合挡坝的数量、高度均对流动特性有影响,在较优的“V”型挡墙与挡坝组合控流装置基础上加入抑湍器后控流效果更佳。通过实验研究,提出了优化方案。  相似文献   

6.
通过三流T型连铸中间包物理模拟实验,研究了直挡墙、V型挡墙及其与抑湍器组合控流装置对中间包流动特性的影响。结果表明,直挡墙控流装置的控流效果优于无控流装置的中间包,但不如设计合理的V型挡墙控流装置;V型挡墙与挡坝组合控流装置(方案Ⅴ)的控流效果较好,在其基础上加入抑湍器后控流效果并不理想。因此,提出了针对三流T型中间包控流装置的优化设计方案。  相似文献   

7.
The effects of shroud diameter, air rate and submergence depth on the residence time distribution of steel melt due to argon shrouded stream in a tundish are studied through a cold model by the impulse response technique using a micro-computer. All the above parameters are found to influence the proportion of surface/bottom flow and the residence times of the volumes of fluid before exiting the tundish. The effect of flow pattern on residence time is analysed in terms of the ratio peak time/delay time and the variance/square of mean residence time. Lastly, a relationship is derived between the different volume fractions and the residence time.  相似文献   

8.
《钢铁冶炼》2013,40(5):398-406
Abstract

Physical modelling using water in a one-third scale model was carried out to ascertain the influence of various types of baffles with inclined holes on the liquid flow in a six strand round bloom continuous casting tundish. To characterise the flow in the tundish, residence time distribution (RTD) curves were measured for different types of baffles with inclined holes. Because there is no well known analysis model to characterise the melt flow in multistrand tundishes, a new model was presented to analyse RTD curves and its reasonability was discussed. Furthermore, a new approach for quantifying the similarity among the strands was proposed and the baffle was optimised to improve the inclusion floatation and strand similarity in the tundish.  相似文献   

9.
Mathematical modeling of transient fluid flow and heat transfer of melt in the ladle has been carried out, both before and during teeming of the melt to a tundish. The model involves solution of the transient, two-dimensional form of the turbulent Navier-Stokes' equation along with the equations of turbulence energy, energy dissipation rate of turbulence energy, and thermal energy conservation in the cylindrical coordinate system. Two different heat loss conditions have been assumed to occur from the top free surface of the melt in the ladle. When the ladle has an insulating layer of slag, temperature stratification occurs within the melt with the coolest melt in contact with the ladle bottom. The degree of temperature stratification increases with the increase in holding time. Pouring of the melt from such a ladle to the tundish, however, results in near uniform ladle stream temperature during the 47 minutes of pouring period considered in the present study. This is especially true if the melt in the ladle is held for a period of 20 minutes prior to teeming. When the melt in the ladle loses an appreciable amount of heat from the top due to a thin layer of slag, the average temperature of the melt drops considerably during the holding period although there is no temperature stratification. Pouring from such a ladle results in a continuous decline of the ladle stream temperature, even though the pouring starts after a holding period of 5 minutes. Formerly Graduate Student, Department of Materials Science and Engineering, Ohio State University  相似文献   

10.
In continuous casting, molten steel often contains non-metallic inclusions that have a very high melting temperature and thus remain suspended in the molten flow. Given the lower density of these substances compared to the melt, they can be filtered in the form of top slag by proper use of buoyancy forces. Thus, providing a desirable flow pattern, reduced flow turbulence, and adequate residence time for inclusions in the tundish will improve the inclusion separation performance and therefore the product quality. In this study, a reduced-scale water model of a tundish was used to evaluate the effect of melt level in the tundish on the flow pattern and inclusion separation performance. Then, the flow control devices are added to this simple tundish model to examine the effect of them on the flow behaviour and inclusion separation. Experimental investigation showed that raising the water level in the model tundish has desirable effects on inclusion separation and the use of the dam at the inlet with tall dam improves the flow pattern and inclusion separation almost 20% in the form of top slag.  相似文献   

11.
The tundish as a part of a continuous casting machine combines the discontinuous ladle metallurgy with the continuous solidification of slabs in the mould. The tundish plays a major role in the challenging task of “clean steel” production. That means the smallest number of inclusions and high cleanliness in all steel grades after changing the conditions at the inlet of the tundish. Inclusions hinder the metal forming process and lead often to fatigue. The cleanliness of steels is important to fulfil the customer's requirements. In the present study inclusion removal was simulated in a 1:3 scaled water model of a single‐strand tundish for the production of stainless steels with a particle counter. The particle counter is capable of counting a large number of particles with a wide range of diameters. The separation rate for particle diameters from dP = 1 ‐ 250 μm was determined with a counter for the water model tundish. With similarity conditions for the particles this deposition rate can be transformed to the melt flow in a steel tundish. The separation rate was measured for different flow rates in the water model tundish. A larger flow rate decreased the separation rate. Additionally, the separation rate for the tundish fitted with an impact pad was measured and showed a significant increase of separation for particles with a smaller diameter. Furthermore, the particle distribution in the tundish for different size groups of particles was investigated with and without an impact pad. Numerical simulations were carried out with the finite‐volume commercial code FLUENT using the realizable k‐ε turbulence model. A special boundary condition for the separation of particles at the surface was implemented.  相似文献   

12.
Single-roll continuous-sheet casting process has been simulated using a mathematical model based on considerations of fluid flow, heat transfer, and solidification. The principal model equations include momentum and energy balances which are written for various zones comprising the process. The flow of liquid metal in the pool is taken to be a two-dimensional recirculatory flow. The concepts of vorticity and stream function are used to reduce the number of equations and number of unknowns, respectively. Model equations and boundary conditions are written in terms of dimensionless variables and are solved, using an implicit finite difference technique, to give stream functions and velocity fields in the metal pool, temperature fields in the metal pool, sheet, and caster drum, and the final sheet thickness for various operating parameters. The parameters examined are: (1) rotational speed of the caster drum, (2) liquid metal head in the tundish, (3) superheat of the melt, (4) caster drum material, and (5) cooling conditions prevailing at the inner surface of the caster drum. The final sheet thickness decreases with increasing rotational speed of the caster drum and melt superheat, but it increases with increasing standoff distance and metal head in the tundish.  相似文献   

13.
T. Merder 《钢铁冶炼》2016,43(10):758-768
The results of numerical simulation and industrial experiments on thermal and flow phenomena in a multi-strand tundish are presented before and after modernisation. The improvement of cast steel purity and the increase of continuous casting (CC) machine capacity was the basic aim of the research. The simplest action was to increase the height of the tundish side walls, so the working zone of tundish had a higher capacity and inside the working area a turbulence inhibitor was installed. Experimental measurements and numerical calculations enabled to estimate the steel velocity and temperature fields. The research focused on the determination of characteristics residence time distribution. Basing on them, the percentage volume of different flows (dead, dispersed plug, well-mixed) was calculated before and after modernisation, which enabled to evaluate the tundish working conditions. Additionally, they gave information about the influence of the multi-strand constructive changes on the hydrodynamics and thermal conditions.  相似文献   

14.
A three‐strand tundish belonging to a billet caster was water modelled and plant trials were performed to compare the performance of a pouring box and a turbulence inhibitor in terms of melt flow parameters and steel cleanliness. A tailor made turbulence inhibitor for this tundish is useful to accomplish with flow control of fluid turbulence and even melt redirection to all strands. The turbulence inhibitor helps to decrease nitrogen pickup during ladle changes and to float out inclusions towards the covering slag. As a consequence, rod operations to take of alumina deposits from nozzle walls are considerably decreased using a turbulence inhibitor.  相似文献   

15.
Melt flow control in a multistrand tundish using a turbulence inhibitor   总被引:1,自引:0,他引:1  
Water modeling and mathematical simulation techniques were used to study the melt flow under the influence of turbulence inhibitors in a multistrand bloom caster tundish. Three different cases were studied: a bare tundish (BT), a tundish with two pairs of baffles and a waved impact pad (BWIP), and a tundish equipped with turbulence inhibitor and a pair of dams (TI&D). Chemical mixing of tracer turbulence diffusion was also simulated and compared with actual experimental results. The TI&D arrangement showed an improvement of the fluid flow characteristics, yielding better tracer distribution among the outlets, lower values of back mixing flow, and higher values of plug flow. A mass transfer model coupled with k-ɛ turbulence model predicted acceptably well the experimental chemical mixing of the tracer in the water model. The water modeling and the numerical simulation indicated that the TI&D arrangement retains the tracer inside the vessel for longer times, increasing the minimum residence time. These results encourage the use of turbulence-inhibiting devices in bloom and billet casters, which pursue excellence in product quality.  相似文献   

16.
通过六流矩形坯连铸中间包的水模试验,研究了不同控流装置对其流动特性的影响。研究结果表明,稳流器和多孔挡墙能明显改善各流流动特性的一致性,在此基础上加设方形孔挡墙能有效减小死区体积。合理的中间包组合控流装置为稳流器+多孔挡墙+方形孔挡墙。  相似文献   

17.
非稳定流动对喷射成型制备圆锭成型性的影响   总被引:3,自引:0,他引:3  
利用计算机数值模拟技术与实验相结合的方法,着重研究了喷射成型过程中、中间包坩埚中金属熔体液高度对雾化锥的雾密度函 影响,以及对喷射成型制备圆锭的成型性的影响。  相似文献   

18.
The quality of the steel (degree of cleanness in the finished material) can be influenced to a great extent by the flow conditions in the continuous casting tundish and the resulting conditions for the separation of non‐metallic inclusions. Whereas in the literature a lot of numerical simulations about the flow patterns of regular casting tundishes have been published, the effects of disturbances like the absence of a strand or the progressive wear of the flow control devices in the tundish on the flow behaviour will be investigated here. It will be shown that the absence of single strands exerts much less influence on the total flow behaviour in the tundish than variances of the flow control devices.  相似文献   

19.
A mathematical model for predicting the melt temperatures in the ladle and in the tundish during continuous casting has been developed. First of all, a chain of models was created for the following stages of the ladle cycle; the preheating of the empty ladle, filling of the ladle, period in the ladle furnace, waiting period prior to casting, the casting period, and, finally, the free cooling period of the empty ladle. Models, written in CFD code, were used in sequence so that each simulation continued from the results of the simulation of the previous stage. An intermediate model was constructed to estimate the outlet temperature of melt drained from the ladle. Then the work was continued by performing simulations in the tundish, using as input the temperature of the simulated melt feed from the ladle and, as an initial condition, the temperature field of the remaining melt in the tundish. The final model “TEMPARV3” was created and tested by means of measured tundish data received from a steel plant. By means of statistical analysis the coefficients of correlation between the test data and model data at the start, in the middle period, and at the end of casting were calculated to be 0.9, 0.92 and 0.87, respectively. So, the most effective predictive power of the model in the tundish by means of a sequential casting schedule is realized during the middle period of the casting process. The model is applied interactively by a user interface, which expresses the predicted melt temperatures numerically and with graphical curves. The predictive model can be used off‐line as a tool for scheduling the stage operations in advance. The program may be utilized on‐line to estimate the superheat needed and to control periods of the operation. In extreme cases, when the model alerts the operator about the danger of superheat loss having a critical effect on casting, the operator has a chance to take adjustment measures. In addition to production work, the model could be of benefit for studying changes in operating parameters, for training operators, and for use as a “low‐cost computational pilot plant” in process development in general.  相似文献   

20.
Extensive water modelling was carried out to ascertain the influence of various types of baffle designs on the hydrodynamic performance of three different designs of steelmaking tundish systems. These included, a two-strand slab casting tundish, a six-strand billet casting tundish and a five-strand, skewed, delta shaped tundish. Plant scale operating conditions were scaled down respecting both geometric and Froude similarity and on the basis of the latter, the inflow rate of water into the model tundish systems was estimated via: Qm = Λ5/2Qf.s. To quantify the hydrodynamic performance, residence time distribution (RTD) characteristics were measured using the conductivity measurement technique for a wide range of baffle designs. From such measurements as well as from flow visualisation studies, the following general observations have been made. The optimum design of baffles together with its number and position within the tundish appear to be a strong function of the basic tundish design (viz., the geometry, the number of operating strands etc.). Of the various types of baffles investigated in this work (dam, dam + weir, baffles with holes etc.), appropriately designed slotted baffles appear to modify the RTD characteristics most favourably towards superior metallurgical performances. Increase in the number of strands, asymmetricity in the tundish design and flawed operating conditions, (viz., large width to length ratio) were all found to influence the tundish performance adversely. A comparison of experimental results for the three tundish systems indicated that changing the characteristics of the baffle design can lead to significant performance improvement in the case of the two symmetric tundish systems (e.g., the two and the six strand tundishes), the five strand skewed, delta shaped tundish was, however, found to be somewhat insensitive to such changes. For such a tundish geometry, no design of the flow-modification devices tried, could bring the hydrodynamic performance any closer to the best results obtained for the two other tundish systems. Possible reasons for such observations are discussed in the text.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号