首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
有限元逆算法与板料成形工艺的评价   总被引:7,自引:2,他引:7  
依据理想形变理论,研究开发了冲压成形过程模拟的有限元逆算法,根据变形体的整体塑性功取相对极值的条件,导出了塑算法有限元方程。提出了求逆算法初始解以及求解与给定形状的毛坯相对应的冲压件形状的迭代计算方法。采用有限元塑算法预测了与冲压件形状相对应的冲压件毛坯的展开形状,根据给定的板坯形状计算了冲压件最终构形及应变分布。分析计算实例表明,逆算法可用于对板料成形工艺方案进行快速评价,对冲压工艺参数进行优化。  相似文献   

2.
Present study describes the approach of applying response surface methodology (RSM) with a Pareto-based multi-objective genetic algorithm to assist engineers in optimization of sheet metal forming. In many studies, finite element analysis and optimization technique have been integrated to solve the optimal process parameters of sheet metal forming by transforming multi objective problem into a single-objective problem. This paper aims to minimize objective functions of fracture and wrinkle simultaneously. Design variables are blank-holding force and draw-bead geometry (length and diameter). Response surface model has been used for design of experiment and finding relationship between variables and objective functions. Forming limit diagram (FLD) has been used to define objective functions. Finite element analysis applied for simulating the process. Proposed approach has been investigated on a cross-shaped cup drawing case and it has been observed that it is more effective and accurate than traditional finite element analysis method and the ‘trial and error’ procedure.  相似文献   

3.
固体颗粒介质板材成形工艺是采用固体颗粒微珠代替刚性凸(凹)模(或弹性体、液体)的作用对板材拉深成形的新工艺。选用非金属固体颗粒介质——GM颗粒作为研究对象,以固体颗粒介质在高应力水平下的体积压缩试验和摩擦强度试验为基础,应用散体力学理论中扩展的Drucker-Prager线性模型构建固体颗粒介质有限元材料模型。以具有非轴对称性的方盒形件为代表,进行固体颗粒介质成形工艺的有限元模拟,研究成形过程中板材的流动特征和壁厚分布规律。工艺试验成功得到方盒形零件,将加载曲线、成形过程变形特征和壁厚分布曲线与数值模拟结果比对较为吻合。分析表明,采用以散体力学为基础建立的固体颗粒介质材料模型进行工艺模拟,能够得到与试验较为接近的变形特征和力能参数,可以应用于制定工艺方案的依据,为该技术在板材成形中的应用起到指导和借鉴作用。  相似文献   

4.
板材软模成形是板材和柔性传力介质耦合变形过程,存在板材和刚性模具及板材和柔性传力介质两种类型的界面接触。采用罚函数法计算接触力,推导了Mindlin轴对称壳单元和实体单元两种不同单元类型之间接触摩擦的有限元列式。采用静力显式的时间积分方法,通过控制载荷步长保持接触状态稳定。粘弹塑性软模材料的板材变形数值算例表明该算法是有效的。该算法也适用于其他类型软模材料的板材变形接触摩擦问题的处理。  相似文献   

5.
汽车覆盖件冲压成形仿真的研究及其工程应用   总被引:6,自引:0,他引:6  
拉延是板料冲压成NAFORM建立有限元冲压仿真系统,对板料拉延成形过程进行了研究.结果表明,坯料形状、压边力大小和拉延筋布置是影响板料拉延成形的关键因素;典型仿真范例验证了研究结果的可靠性,并从成形极限图(FLD)上进行了工艺方案的改进.  相似文献   

6.
铝合金阶梯形件粘性介质压力成形的研究   总被引:9,自引:1,他引:9  
通过压缩试验得到了粘性介质的应力--应变关系、压力衰减随冲头加载速率及时间变化的规律。采用有限元软件DEFORM分析了在不同压边力下分别用钢凸模和粘性介质成形铝合金阶梯形件的工艺过程。结果显示,采用VPF可以提高板料的成形性。根据模拟结果,采用VPF成功地制备了阶梯形件,这表明有限元法对VPF试验具有很好的指导意义。  相似文献   

7.
橡皮囊成形是航空企业中钣金件成形的主要方法之一,经常需要采用有限元软件进行成形过程分析,其中传统有限元建模不仅对技术人员操作水平要求高,而且建模效率低。针对橡皮囊成形有限元建模过程进行了分析,总结归纳出可以自动实现建模的部分,包括几何建模、材料定义和网格划分等,基于ANSYS Workbench软件的DM模块以及DS模块进行二次开发,建立专用的橡皮囊成形分析模块,实现橡皮囊成形有限元模型的快速构建,操作界面友好。应用所开发的模块对某钣金件橡皮囊成形过程进行有限元建模,并与传统有限元建模方法进行对比分析,结果表明,采用所开发的模块建模分析与传统有限元建模方法的模拟结果吻合较好,证明了所开发模块的有效性。  相似文献   

8.
基于有限元逆算法的拉深筋工艺设计和优化   总被引:4,自引:0,他引:4  
汽车覆盖件拉深成形中,一般通过设置适当的拉深筋控制成形过程中的板料塑性流动规律来提高覆盖件成形质量。针对覆盖件工艺设计需求,提出一种基于有限元逆算法的拉深筋工艺优化算法。该算法以灵敏度优化方法为基础,考虑了板料的成形度、破裂和起皱等成形缺陷。在板料成形模拟FASTAMP系统中,开发了拉深筋优化模块,并以实际覆盖件为例,验证了该算法能快速准确地模拟等效拉深筋力的布置情况以及优化板料的成形性。  相似文献   

9.
Multi-point forming (MPF) is a new flexible technique for manufacturing three-dimensional sheet metal parts. In this procedure, a pair of opposed matrices of punch elements substitute for the conventional fixed shape die sets, and the sheet metal can be formed rapidly between the matrices. Extensive numerical simulations of the processes for forming spherical and saddle-shaped parts were carried out by dynamic explicit finite element analysis. The contacting process between sheet metal and punch elements in MPF was investigated, and the variations of forming force with respect to the tool travel were analyzed. The wrinkling processes were simulated, and the MPF limit curves without wrinkles for spherical and saddle-shaped parts were obtained. Dimple is a particular defect in MPF, through the comparison of the thickness strains calculated by solid FE and shell FE, the finite elements appropriate for the numerical analysis of dimpling were detected, and the limit forming force without dimples was determined. Springback processes of MPF were simulated based on explicit-implicit algorithm. The springbacks and their distributions under different conditions were investigated.  相似文献   

10.
The three-roll bending forming of sheet metal is an important and flexible manufacturing process due to simple configuration. It is suitable for forming large sheet parts with complex, curved faces. Most researches on roll bending forming of large workpiece are mainly based on experiments and explain the process through macroscopic metal deformation. An analytical model and ABAQUS finite element model (FEM) are proposed in this paper for investigating the three-roll bending forming process. A reasonably accurate relationship between the downward inner roller displacement and the desired springback radius (unloaded curvature radius) of the bent plate is yielded by both analytical and finite element approaches, which all agree well with experiments. Then, the three-roll bending forming process of a semi-circle-shaped workpiece with 3,105 mm (length)?×?714 mm (width)?×?545 mm (height) is simulated with FEM established by the optimum tool and process parameters. Manifested by the experiment for three-roll bending forming of this workpiece, the numerical simulation method proposed yields satisfactory performance in tool and process parameters optimization and workpiece forming. It can be taken as a valuable mathematical tool used for three-roll bending forming of large area sheet metal.  相似文献   

11.
Laser shock forming (LSF) is a sheet plastic forming technology, which employs laser-induced shock waves to make sheet metal duplicate a desired shape of the mold. In this paper, a finite element analysis (FEA) model was developed to simulate dynamic forming process with the commercial finite element code ABAQUS/Explicit, and a series of dynamic deformation behaviors of the metal sheet shaped into conical cup at the end of different periods of time were displayed and discussed in detail. The springback of conical cup and the distribution of residual stress were analyzed with ABAQUS/Standard. All these investigations could provide insight into the physics process of the ultra-fast deformation. The LSF experiment was further conducted to verify the results predicted by FEA. The experiment results are well consistent with the numerical predicted data, which validates the FEA model. It indicates that FEA can be used to simulate the forming process and optimize its parameters.  相似文献   

12.
钣料成形过程动力分析中的惯性效应及对策   总被引:2,自引:1,他引:1  
指出钣料成形过程中采用曲面压料面时,压边圈夹紧过程动力显式有限元分析存在惯性效应问题。提出“虚拟补实压边圈”方法克服惯性作用,高效实现曲面压边圈夹紧过程的动力工有限元模拟,拓展动力显式有限元方法在钣料成形数值模拟中的应用领域,对于连续快速地模拟曲面压边和拉延等多阶段钣料成形过程意义重大。  相似文献   

13.
优化板料成形状态的新技术   总被引:8,自引:2,他引:6  
李赞  董湘怀  李志刚 《中国机械工程》2002,13(23):2007-2010
为了解决一些形状复杂的薄板零件在实际生产中存在的问题,提出了优化板料成形状态的思想,介绍了一种既能有效地减小薄板成形时法兰面上流动阻力极大区域内的流动阻力,又不会增加起皱趋势,进而优化板料成形状态的新工艺措施。对这一措施进行了较为精确的有限元数值模拟和机理分析。  相似文献   

14.
蒋玮  谢欢 《装备制造技术》2014,(2):93-95,98
板料冲压成形作为一种重要的塑性加工工艺,广泛应用于各种工业领域。首先讨论了用有限元分析软件研究板料成形过程的重要意义;其次介绍了有限元分析成型件的成型工艺;然后介绍了用Ansys研究成型件成型工艺的国内外进展情况;最后对这一领域的发展趋势作了展望。  相似文献   

15.
回弹是由工件在卸载后的弹性变形引起的。板料成形过程中为了控制成形件的最终形状,必须进行回弹设计优化。准确预测回弹对于板料成形过程的模具设计非常重要。降低回弹模拟结果与试验结果的偏差是设计过程中的难题。基于NUMISHEET’02的自由弯曲标准考题考虑板材与模具间的接触演变过程,建立了一个有限元模型来预测回弹。采用一个常规的优化方法对有限元分析中的材料和单元模型进行了分析,研究发现不同模型对回弹结果有较大影响。模拟结果与参考文献中的试验结果比较表明了模型的正确性和可行性。  相似文献   

16.
NUMERICAL SIMULATION FOR LASER BENDING OF SHEET METAL   总被引:4,自引:0,他引:4  
0INTRODUCTIONLaserbendingofsheetmetalisanewflexibleformingtechnologyinrecentyears,whichdependsononlynonuniformheatingbutnot...  相似文献   

17.
The multi-point forming (MPF) process of spherical surface parts of titanium alloy retiary sheet and titanium alloy sheet metal with different thickness and curvature radius was simulated by an explicit finite element software. Contradistinctive analysis between retiary sheet and sheet metal forming parts with different modes were done. The simulation results show that under the same forming conditions, titanium alloy retiary sheet is not easy to wrinkle and springback, whereas it is easy to form. The reason for differences in the formability of above-mentioned sheet metal is also analyzed. A non-wrinkling limited graph and a fracture critical graph for spherical surface parts of retiary metal sheet and metal sheet were obtained. Finally a forming test of titanium alloy cranial prosthesis was done in MPF press. Testing results indicate the customized 3D curved surface of prosthesis can be adequately shaped and the forming quality was guaranteed.  相似文献   

18.
薄板冲压成形过程的并行有限元仿真技术   总被引:5,自引:1,他引:4  
根据显式有限元的计算特点和神威超级计算机的体系结构,设计了基于消息传递和区域分解的动态显式有限元的并行算法,给出了基于薄板冲压有限元仿真特点的并行化分区算法,开发了薄板冲压成形并行有限元仿真软件。算例计算结果表明:采用并行有限元计算,可以大大提高薄板冲压成形的仿真计算效率。  相似文献   

19.
Improving the formability of aluminium alloy sheet metal by using warm or elevated temperature has become a valid approach. In this paper, viscous pressure bulging (VPB) at warm temperature is proposed. The coupled thermo-mechanical finite element method and experimental method were used to investigate the VPB of aluminium alloy AA3003 at warm temperature. The temperature distributions of sheet metal and viscous medium were analyzed for non-isothermal VPB. The influence of forming temperature on thickness distribution, forming load and failure location of sheet metal were investigated. Research results show the temperature gradient field in sheet metal forms when the initial temperature of viscous medium is lower than that of sheet metal. The formability and failure location of sheet metal changes with initial temperature of viscous medium.  相似文献   

20.
Multi-gripper flexible stretch forming (MGFSF) is a novel flexible forming process of sheet metal based on the multi-point forming principle. The straight jaws in traditional transverse stretch forming (TSF) are replaced by several discrete clamping mechanisms on both sides. To help understand the forming characters of MGFSF, spherical and concave–convex parts were selected as the research objects and finite element analyses on TSF and MGFSF were implemented using an explicit nonlinear finite element code. The influence of the transition length on the forming results in MGFSF was also taken into account in the present work. The simulation results reveal that a shorter transition length in MGFSF would result in an easier conformability of the sheet metal to the desired shape as well as a smaller strain variation in the forming zone. It is also found that, compared to TSF, the sheet metal can be formed without transition zone by utilizing MGFSF, which could significantly improve the material utilization and save the manufacturing costs. Finally, experimental validations were conducted on the self-developed MGFSF apparatus and the experimental results show a good agreement with the numerical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号