where W is the wear volume (depth), K the wear coefficient, P the contact pressure, S the slippage.And then the stress intensity factor for cracking due to fretting fatigue was calculated by using contact pressure and frictional stress distributions, which were analyzed by the finite element method. The SN curves of fretting fatigue were predicted by using the relationship between the calculated stress intensity factor range (ΔK) with the threshold stress intensity factor range (ΔKth) and the crack propagation rate (da/dN) obtained using CT specimens of the material. And then fretting fatigue tests were conducted on Ni–Cr–Mo–V steel specimens. The SN curves of our experimental results were in good agreement with the analytical results obtained by considering fretting wear process. Using these estimation methods we can explain many fretting troubles in industrial fields.  相似文献   

4.
Friction and wear of carbon steel near T1-transition under dry sliding     
Yoshifumi Amamoto  Hozumi Goto 《Tribology International》2006,39(8):756
The wear phenomenon of metals under dry sliding is, generally, divided into two modes of severe and mild wear. A discontinuous transition between the wear modes often takes place in a certain load range. The T1-transition is usually observed at lower levels of load or sliding velocity. There is a great difference in wear rate between severe and mild wear. This indicates that the occurrence of severe wear should be avoided, especially in the field of machine design to prevent energy loss, occurrence of noise and vibration, and life reduction of machines and their components. Therefore, it is important for machine designers to know the relationship between friction and wear and the difference in properties of the wear surfaces in the two wear modes. In this study, wear tests of 0.35% C steel in contact with itself under constant load were conducted in moist air at various contact loads under dry sliding. The friction and wear were measured continuously throughout each test. After the tests, the relationship between friction and wear and the difference in properties of the wear surfaces were investigated in each wear mode. From the results, the upper and lower critical loads (Pacr and PAcr) appeared between severe and mild wear. The phenomenon of zero wear has been newly found in the early period at very low loads. The zero wear continued for a long sliding distance and then changes to mild wear. The critical load between zero wear and mild wear is defined as Pzerowear. The load was changed once in a step-wise manner from low to high levels in process of test. Since the rubbing history under mild wear condition at the low load in the first stage affected the properties of wear surface, the wear mode at the high load in the second stage changed from ‘mild wear’ to ‘quasi-mild wear’ having a low rate. From the relationship between sliding distance necessary for the appearance of quasi-mild wear and contact load in the first stage, the boundary curve between severe wear and quasi-mild wear in the second stage is hyperbolic. This curve gradually approaches Pzerowear with decreasing contact load. Thus, Pzerowear is one of the important critical loads for elucidating the test results under varying load.  相似文献   

5.
Direct observation of the interface during sliding tribo-corrosion     
K.L. Dahm   《Tribology International》2007,40(10-12):1561
A new test apparatus has been developed to allow the sliding interface between the inert and “active” surfaces during tribo-corrosion to be viewed directly. This apparatus allows the nominal contact area to be viewed and will, it is hoped, eventually allow the real contact area and the role of wear debris to be clearly revealed. Initial experiments reciprocating glass plates against AISI 316 balls in 0.1 M Na2SO4 have shown that the corrosion current does not linearly depend on the wear scar area and that the electrochemical contribution to the total material loss increases with increasing sliding distance.  相似文献   

6.
Impact of Cr3C2/VC addition on the dry sliding friction and wear response of WC–Co cemented carbides     
K. Bonny  P. De Baets  J. Vleugels  S. Huang  O. Van der Biest  B. Lauwers 《Wear》2009,267(9-10):1642-1652
Two grades of WC–10 wt.%Co cemented carbide with or without addition of Cr3C2/VC grain growth inhibitor during liquid phase sintering were produced with the goal to investigate their reciprocating sliding friction and wear behaviour against WC–6 wt.%Co cemented carbide under unlubricated conditions. The tribological characteristics were obtained on a Plint TE77 tribometer using distinctive normal contact loads. The generated wear tracks were analyzed by scanning electron microscopy and quantified topographically using surface scanning equipment. The post-mortem obtained wear volumes were compared to the online assessed wear. Correlations between wear volume, wear rate and coefficient of friction on the one hand and sliding distance and microstructural properties on the other hand were determined, revealing a significant influence of Cr3C2/VC on the friction characteristics and wear performance.  相似文献   

7.
Wear behavior of low-cost, lightweight TiC/Ti–6Al–4V composite under fretting: Effectiveness of solid-film lubricant counterparts     
Kazuhisa Miyoshi  Jeffrey H. Sanders  Carl H. Hager Jr.  Jeffrey S. Zabinski  Randall L. Vander Wal  Rodney Andrews  Kenneth W. Street Jr.  Bradley A. Lerch  Phillip B. Abel 《Tribology International》2008,41(1):24-33
The wear behavior of low-cost, lightweight 10 wt% titanium carbide (TiC)-particulate-reinforced Ti–6Al–4V matrix composite (TiC/Ti–6Al–4V) was examined under fretting at 296, 423, and 523 K in air. Bare 10 wt% TiC/Ti–6Al–4V hemispherical pins were used in contact with dispersed multiwalled carbon nanotubes (MWNTs), magnetron-sputtered diamond-like carbon/chromium (DLC/Cr), magnetron-sputtered graphite-like carbon/chromium (GLC/Cr), and magnetron-sputtered molybdenum disulfide/titanium (MoS2/Ti) deposited on Ti–6Al–4V, Ti–48Al–2Cr–2Nb, and nickel-based superalloy 718. When TiC/Ti–6Al–4V was brought into contact with bare Ti–6Al–4V, bare Ti–48Al–2Cr–2Nb, and bare nickel-based superalloy 718, strong adhesion, severe galling, and severe wear occurred. However, when TiC/Ti–6Al–4V was brought into contact with MWNT, DLC/Cr, GLC/Cr, and MoS2/Ti coatings, no galling occurred in the contact, and relatively minor wear was observed regardless of the coating. All the MWNT, DLC/Cr, GLC/Cr, and MoS2/Ti coatings on Ti–6Al–4V were effective from 296 to 523 K, but the effectiveness of the MWNT, DLC/Cr, GLC/Cr, and MoS2/Ti coatings decreased as temperature increased.  相似文献   

8.
Microstructure and Tribology of Spark Plasma Sintered Fe–Cr–B Metamorphic Alloy Powder     
Ahmad A. Sorour  Holger W. Strauss  Richard R. Chromik  Mathieu Brochu 《Tribology Letters》2011,44(2):269-278
The spark plasma sintering (SPS) process was used to fabricate a bulk Fe–Cr–B alloy (known as Armacor M) from gas-atomized powders. The purpose of this work is to study the microstructure, hardness and tribology of this sintered bulk alloy. Post microstructure and mechanical characterizations were performed to investigate the effects of wear on the microstructure and mechanical properties. Microstructural analysis using X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) showed that SPS successfully produced a fully dense bulk material containing 67 vol.% Cr1.65Fe0.35B0.96 particles dispersed in 33 vol.% solid solution matrix consisting of Fe, Cr and Si. Using nanoindentation, the hardness of the Cr1.65Fe0.35B0.96 particles and the matrix was found to be 24 and 6 GPa, respectively. From microindentation, the bulk hardness of the sintered alloy was 9.7 GPa (991 HV). Dry sliding wear testing under mild conditions (i.e., initial Hertzian mean contact pressure of 280 MPa) was conducted against a stainless steel pin. The steady state coefficient of friction against Armacor M was about 0.82. The wear of Armacor M proceeded primarily by adhesive and mild oxidative wear. The wear volume for Armacor M was 80% less than that of carbon steel and its wear rate was 5.53 × 10−6 mm3 N−1 m−1.  相似文献   

9.
Steels’ wear resistance definition method by their standard mechanical characteristics     
G.M. Sorokin  V.N. Malyshev   《Tribology International》2008,41(6):515-523
The basic regularities of abrasive outwearing for steels of different structural classes are considered. The reliable function bond of steels’ wear resistance with their mechanical characteristics is proved. The correlation of toughness and plasticity with wear resistance is revealed and the new method of steels’ wear resistance definition based on the use of standard mechanical characteristics is offered. The complex criterion for steels’ wear resistance estimation at mechanical outwearing—the product of ultimate strength on relative reduction of area—(σb×ψ) characterizes a nature of steels’ outwearing and is reliable enough for determination of wear resistance in conditions of sliding friction, rolling friction on an abrasive and at erosive outwearing. Using offered complex criterion of steels wear resistance, it is possible to determine or estimate the wear resistances of many steels without running their wear tests. The leading role of metal science in the decision of problem of wear resistance increase for equipment working under abrasive wear conditions is marked.  相似文献   

10.
Hot wear properties of ceramic and basalt fiber reinforced hybrid friction materials   总被引:3,自引:0,他引:3  
Bülent ztürk  Fazl&#x; Arslan  Sultan ztürk 《Tribology International》2007,40(1):37-48
In the present study, hybrid friction materials were manufactured using ceramic and basalt fibers. Ceramic fiber content was kept constant at 10 vol% and basalt fiber content was changed between 0 to 40 vol%. Mechanical properties and friction and wear characteristics of friction materials were determined using a pin-on-disc type apparatus against a cast iron counterface in the sliding speeds of 3.2–12.8 m/s, disc temperature of 100–350 °C and applied loads of 312.5–625 N. The worn surfaces of the specimens were examined by SEM. Experiments show that fiber content has a significant influence on the mechanical and tribological properties of the composites. The friction coefficient of the hybrid friction materials was increased with increasing additional basalt fiber content. But the specific wear rates of the composites decreased up to 30 vol% fiber content and then increased again above this value. The wear tests showed that the coefficient of friction decreases with increasing load and speed but increases with increasing disc temperature up to 300 °C. The most important factor effecting wear rate was the disc temperature followed by sliding speed. The materials showing higher specific wear rates gave relatively coarser wear particles. XRD studies showed that Fe and Fe2O3 were present in wear debris at severe wear conditions which is indicating the disc wear.  相似文献   

11.
Abrasive wear performance of carbon fabric reinforced polyetherimide composites: Influence of content and orientation of fabric   总被引:4,自引:0,他引:4  
J. Bijwe  Rekha Rattan  M. Fahim 《Tribology International》2007,40(5):844-854
Dry abrasive wear performance of five plain weave carbon fabric (CF) reinforced Polyetherimide (PEI) composites, developed with increasing CF contents (in the step of 10 vol%) is reported in this paper. It was observed that composite reinforced with 65 vol% CF (IP65) exhibited the best tensile and shear strength and closely followed the leader (IP75) in flexural strength. IP65 when abraded against silicon carbide paper showed highest wear resistance (WR) and lowest friction coefficient (μ) among all composites. The composites IP85 and IP40 containing highest and lowest amount of CF respectively showed least enhancement in strength properties and poorest wear performance. Parallel studies on the influence of fabric orientation with respect to the sliding plane and direction, on WR showed that when CF was oriented parallel to the sliding plane, it had poorest wear resistance. The performance improved for the composites when fabric was oriented normal to the plane. The parallel or anti-parallel orientation of warp or weft fibers with respect to sliding direction showed marginal changes in friction and wear performance. Wear mechanisms were suggested and strongly supported by worn surface analysis using SEM.Efforts were also done to investigate the wear-property correlation. It was observed that the WR was directly proportional to the product of interlaminar shear strength (Is) and elastic modulus (E). Fairly good linearity was shown for specific wear rate (K0) as a function of factor (μP/IsE) where μ is coefficient of friction and P is the normal pressure (N/mm2).  相似文献   

12.
Dry-sliding self-lubricating ceramics: CuO doped 3Y-TZP     
Shen Ran  Louis Winnubst  Dave H.A. Blank  Henry R. Pasaribu  Jan-Willem Sloetjes  Dik J. Schipper 《Wear》2009,267(9-10):1696-1701
Dense 8 mol% CuO doped 3Y-TZP ceramics prepared by pressureless sintering at 1500 °C exhibits a good wear-resistance (specific wear rate k < 10−6 mm3 N−1 m−1) and promisingly low friction (coefficient of friction f = 0.2–0.3) when sliding against an alumina ball under unlubricated conditions. It was recognized that a self-lubricating mechanism is the most important contribution to the reduction of friction. During operation of the tribosystem, a soft interfacial patchy layer is generated in the contact area. As confirmed by calculations, based on a deterministic friction model, this soft interfacial patchy layer reduces friction. It was demonstrated that the presence of copper oxide is important for the formation of such an interfacial layer. The mechanism of the transition from mild to severe wear was also investigated. Detachment of a top layer in the wear track was proven to be the main reason for this tribological change.  相似文献   

13.
Micro-abrasion mechanisms of cast CoCrMo in simulated body fluids   总被引:1,自引:0,他引:1  
D. Sun  J.A. Wharton  R.J.K. Wood 《Wear》2009,267(11):1845-1855
The abrasion seen on some of the retrieved CoCrMo hip joints has been reported to be caused by entrained hard particles in vivo. However, little work has been reported on the abrasion mechanisms of CoCrMo alloy in simulated body environments. Therefore, this study covers the mapping of micro-abrasion wear mechanisms of cast CoCrMo induced by third body hard particles under a wide range of abrasive test conditions. This study has a specific focus on covering the possible in vivo wear modes seen on metal-on-metal (MoM) surfaces. Nano-indentation and nano-scratch tests were also employed to further investigate the secondary wear mechanisms—nano-scale material deformation that involved in micro-abrasion processes. This work addresses the potential detrimental effects of third body hard particles in vivo such as increased wear rates (debris generation) and corrosion (metal-ion release). The abrasive wear mechanisms of cast CoCrMo have been investigated under various wear-corrosion conditions employing two abrasives, SiC (4 μm) and Al2O3 (1 μm), in two test solutions, 0.9% NaCl and 25% bovine serum. The specific wear rates, wear mechanisms and transitions between mechanisms are discussed in terms of the abrasive size, volume fraction and the test solutions deployed. The work shows that at high abrasive volume fractions, the presence of protein enhanced the wear loss due to the enhanced particle entrainment, whereas at much lower abrasive volume fractions, protein reduced the wear loss by acting as a boundary lubricant or rolling elements which reduced the abrasivity (load per particle) of the abrasive particles. The abrasive wear rate and wear mechanisms of the CoCrMo are dependent on the nature of the third body abrasives, their entrainment into the contact and the presence of the proteins.  相似文献   

14.
Tribological characterisation of siliconcarbonitride ceramics derived from preceramic polymers     
《Wear》2006,260(7-8):711-719
Amorphous SiCN ceramics were prepared in a laboratory scale as disk shaped specimens with 10 mm diameter and 0.3 mm thickness. The friction and wear behaviour was characterised in gross slip fretting tests under unlubricated conditions at room temperature against steel (100Cr6) and ceramic (Al2O3). Tests with a ball-on-disk contact were performed in laboratory air with different content of water vapour. The results show clearly that the relative humidity has a significant effect on friction and wear behaviour. All tests in dry air lead to higher friction and higher wear rate than in normal air. Improved friction and wear behaviour was observed with increasing pyrolysis temperature up to 1100 °C of the SiCN specimens. This is attributed to increasingly better mechanical properties and higher stiffness of the amorphous network due to the evaporation of gaseous organic species and the formation of free graphite like carbon.  相似文献   

15.
Friction and Wear Properties of Silicon Carbide in Water from Different Sources     
Mitsuo Matsuda  Koji Kato  Atsushi Hashimoto 《Tribology Letters》2011,43(1):33-41
Low friction and low wear of SiC sliding against itself in water at room temperature have been well reported in the past 20 years, and some practical applications have been developed. However, the properties of friction and wear in pure, deionized or distilled water have been mainly observed and not in water from sources in nature. In this article, the fundamental properties of friction and wear between SiC ball and disk are observed in water from ground, river, and sea, and the results are compared with those in deionized water in the viewpoints of modes of lubrication and wear and the resultant values of friction coefficient and wear rate. The smallest friction coefficient (μ = 0.005) in steady state is observed in deionized water and the largest (μ = 0.013) in sea water. The smallest wear rate (w s = 2.2 × 10−7 mm3/Nm) is observed in sea water and the largest (w s = 3.1 × 10−7 mm3/Nm) in deionized water. The intermediate values of μ and w s between the smallest and the largest ones are observed in ground and river water. The modes of lubrication and wear, which generated observed values of μ and w s, are considered as mixed lubrication and tribochemical wear. The chemical elements of Na, Cl, Mg, and K in sea water observed on wear particles and pits are thought effective to generate the largest value of μ and the smallest value of w s.  相似文献   

16.
Influence of weave of carbon fabric on abrasive wear performance of polyetherimide composites     
R. Rattan  J. Bijwe 《Tribology Letters》2006,22(1):105-112
Three composites of Polyetherimide (PEI) reinforced with carbon fabric (CF) of three weaves viz. plain, twill and satin-4 H were developed keeping the amount of fabric constant (55% by vol.). Studies on mechanical properties confirmed that the twill weave composite (T) showed the highest strength, modulus (both tensile and flexural) and interlaminar shear strength (ILSS) followed by satin (S) and plain weave (P) composites. The performance order, however, was reverse in the case of toughness and elongation to break. Specific wear rate in a single-pass, unidirectional and un-lubricated abrasive wear mode against SiC paper showed strong influence of weave in mild wear condition (load 10 N). Composite S showed the highest wear resistance (W R) followed by composites T and P. With increase in load, the difference in performance diminished to the extent that at 40 N, it was almost similar for all the three composites. This was correlated with the difference in the length of the fibers between crossover points which, in turn, allowed the microdisplacement of fibers in the composites during abrasion. This was supported by the SEM.
  首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyimide cylinders are slid under 50 N normal load and 0.3 m/s sliding velocity against carbon steel (Ra=0.2 and 0.05 μm), high-alloy steel (Ra=0.05 μm), diamond-like carbon (DLC, Ra=0.05 μm) and diamond-like nanocomposite (DLN, Ra=0.05 μm). Only for a limited range of test parameters, the friction of polyimide/DLN is lower than for polyimide/steel, while polyimide shows higher wear rates after sliding against DLN compared to steel counterfaces. The DLN coating shows slight wear scratches, although less severe than on DLC-coatings that are worn through thermal degradation. Therefore, also friction against DLC-coatings is high and unstable. Calculated bulk temperatures for steel and DLN under mild sliding conditions remain below the polyimide transition temperature of 180 °C so that other surface characteristics explain low friction on DLN counterfaces, as surface energy, structural compatibility and transfer behaviour. Friction is initially determined through adhesion and it is demonstrated that higher surface energy provides higher friction. After certain sliding time, different polyimide transfer on each counterface governs the tribological performance. Polyimide and amorphous DLC structures are characterised by C–C bonds, showing high structural compatibility and easy adherence of wear debris on the coating. However, it consists of plate-like transfer particles that act as abrasives and deteriorate the polyimide wear resistance. In sliding experiments with high-alloy steel, wear debris is washed out of the contact zone without formation of a transfer film. Transfer consists of island-like particles for smooth carbon steel and it forms a more homogeneous transfer film on rough carbon steel. The latter thick and protective film is favourable for low wear rates; however, it causes higher friction than smooth counterfaces.  相似文献   

2.
Anticipated emission legislation and reduced fuel consumption are the main driving forces when developing new engines. Optimization of the active surfaces in the piston system is one possible way to meet the above demands. In this study the effects of surface topography and texture direction of the ring/liner contact on oil film thickness and friction were simulated and experimentally tested. “Low wear” results from the experimental wear tests with “glide honed” smooth liner surfaces supported the “low friction” simulation results. In addition a new wear volume sensitive surface roughness parameter, Rktot, based on the Abbot–Firestone bearing area curve was introduced.  相似文献   

3.
Fretting fatigue strength estimation considering the fretting wear process   总被引:1,自引:0,他引:1  
In fretting fatigue process the wear of contact surfaces near contact edges occur in accordance with the reciprocal micro-slippages on these contact surfaces. These fretting wear change the contact pressure near the contact edges. To estimate the fretting fatigue strength and life it is indispensable to analyze the accurate contact pressure distributions near the contact edges in each fretting fatigue process.So, in this paper we present the estimation methods of fretting wear process and fretting fatigue life using this wear process. Firstly the fretting-wear process was estimated using contact pressure and relative slippage as follows:
W=K×P×S,
J. BijweEmail:
  相似文献   

17.
Sliding friction and wear performance of Ti6Al4V in the presence of surface-capped copper nanoclusters lubricant     
Fang Wang  Qin-Ling Bi  Xiao-Bo Wang  Wei-Min Liu 《Tribology International》2008,41(3):158-165
The friction and wear properties of Ti6Al4V sliding against AISI52100 steel ball under different lubricative media of surface-capped copper nanoclusters lubricant—Cu nanoparticles capped with O,O′-di-n-octyldithiophosphate (Cu-DTP), rapeseed oil and rapeseed oil containing 1 wt% Cu-DTP was evaluated using an Optimol SRV oscillating friction and wear tester. The wear mechanism was examined using scanning electron microscopy (SEM) and X-ray photoelectron spectrosmeter (XPS). Results indicate that Cu-DTP can act as the best lubricant for Ti6Al4V as compared with rapeseed oil and rapeseed oil containing 1 wt% Cu-DTP. The applied load and sliding frequency obviously affected the friction and wear behavior of Ti6Al4V under Cu-DTP lubricating. The frictional experiment of the Ti6Al4V sliding against AISI52100 cannot continue under the lubricating condition of rapeseed oil or rapeseed oil containing 1 wt% Cu-DTP when the applied load are over 100 N. Surprisingly, the frictional experiment of Ti6Al4V sliding against AISI52100 steel can continue at the applied load of 450 N under Cu-DTP lubricating. The tribochemical reaction film containing S and P is responsible for the good wear resistance and friction reduction of Ti6Al4V under Cu-DTP at the low applied load. However, a conjunct effect of Cu nanoparticle deposited film and tribochemical reaction film containing S and P contributes to the good tribological properties of Ti6Al4V under Cu-DTP at the high-applied load.  相似文献   

18.
Coating thickness effects on initial wear of nitrogen-doped amorphous carbon in nano-scale sliding contact: Part I—in situ examination     
Dong F. Wang  Koji Kato 《Tribology International》2003,36(9):715
This paper, the first of a two-part series, presents the empirical data obtained from in situ examination on the generation of wear particles on carbon nitride coatings by a spherical diamond counter-face during repeated sliding contacts. In particular, the effect of coating thickness, varying from 1 to 500 nm, on the generation of wear particles was examined.Based on the in situ examination, the shape transition maps for generated wear particles were obtained for carbon nitride coatings of various thickness. The results show that the critical number of friction cycles, Nc, for the transition from “no observable wear particles” to “wear particle generation” generally increased with increasing coating thickness. It was noted that up to 20 friction cycles, the maximum Hertzian contact pressure, Pmax, for “no observable wear particles” regime can be increased from 1.39Y to 1.53Y if silicon was coated with carbon nitride coating thicker than 10 nm, where Y is defined as the yield strength of silicon.  相似文献   

19.
Friction of some commercial polymer-based bearing materials against steel     
J.M. Thorp 《Tribology International》1982,15(2):69-74
Cylindrical test pins of some commercial polymer-based bearing materials (comprising two nylons 6, a filled nylon 6/6, a filled ultra-high molecular weight polyethene (uhmwpe) and three polyurethanes) were rotated, in dry conditions and at constant load and sliding speed, on circular tracks on stationary discs of steel gauze and abrasive paper.Wear against run-in steel gauze was proportional to the sliding time (distance), with the specific wear rate, vsp, (wear volume per unit area per unit sliding distance) varying with the nominal pressure, p, according to vsp = Kpα. Values of K and α are presented enabling comparison of the fatigue wear of the materials at various loads against steel (or a counterface with rounded asperities) in non-transfer film conditions. Nylon 6 showed the least wear and the polyurethanes showed the greatest wear, up to pressures of 3.43 MN m−2 (500 lbf in−2).With abrasive paper, the circular path became progressively clogged with transfer films and wear debris, and the wear volume, ΔW, diminished with time, t, throughout the test duration, following the relationship ΔW = Dtc, where both c and D are functions of the wear path diameter. c appears to be related to the film transfer capability of the polymer. The best overall abrasive wear resistance (in transfer film conditions) was exhibited by the filled uhmwpe, followed by two polyurethanes. Nylon 6 showed relatively poor abrasion resistance under these conditions. The mechanical properties indicate, with one exception, a similar ranking order for non-transfer film conditions  相似文献   

20.
Torsional Wear Behavior of MC Nylon Composites Reinforced with GF: Effect of Angular Displacement     
Shi-bo Wang  Sha Zhang  Yong Mao 《Tribology Letters》2012,45(3):445-453
The torsional wear behavior of monomer cast nylon (MC nylon) composites reinforced with glass fiber was studied with a self-made torsional friction tester. The worn surface of MC nylon composites was investigated with a scanning electron microscope. The worn surface of the steel disk was observed with a 3-D profiler. The experimental results indicated that the shape of torque–angular displacement (Tθ) curves changed from elliptic shape to quasi-parallelogram with the angular displacement increased from 5° to 30°. The serious wear characterized with a deep groove occurred at the position of about 1.5–4 mm radius of contact zone on the steel surface. The mass of MC nylon samples increased after torsional wear test. The torsional contact area can be divided into three zones: (a) a central stick zone, (b) an intermediate mixed-slipping annulus, and (c) a peripheral sliding annulus. The most serious wear occurred in the intermediate annulus because of the higher contact stress and mixed slip regime. The main wear mechanism of MC nylon samples was adhesive wear and abrasive wear. Plastic deformation of asperities was the character in the central zone. Slight adhesive wear was the main wear mechanism in the peripheral annulus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号